ANAESTHESIOLOGY - REGIONAL ANAESTHESIA / SPECIAL ARTICLE
Figure from article: Objective monitoring of...
 
KEYWORDS
TOPICS
ABSTRACT
Assessing pain in non-communicative patients remains challenging in anaesthesia and intensive care. When self-report is unavailable, clinicians infer nociception from behaviour and physiology. Behavioural scales such as the Behavioral Pain Scale and the Critical-Care Pain Observation Tool are simple and reproducible, supporting consistent practice; however, performance declines with deep sedation, neuromuscular blockade, or severe neurological injury. Where behavioural cues are absent or unreliable, physiological and neurophysiological signals provide partial information. Autonomic indicators, including heart rate variability, the Surgical Pleth Index, pupillometry, and skin conductance, capture sympathetic responses to noxious stimuli rather than perceived pain and are sensitive to drugs, haemodynamic instability, shivering, and agitation. Electroencephalography and functional near-infrared spectroscopy identify cortical responses to nociceptive input, yet clinically useful thresholds remain context dependent, and most applications are research-based. Emerging machine-learning systems that integrate behaviour and physiology show promise, but models validated in the operating room are not automatically applicable in the intensive care unit and require new external validation with potential recalibration. Evidence is generally stronger intraoperatively than in intensive care, and paediatric data are limited. No instrument directly measures subjective pain when self-report is absent. Available tools index nociception through behavioural and physiological correlates and must be interpreted within the clinical context.
REFERENCES (100)
1.
Gélinas C, Fillion L, Puntillo KA, Viens C, Fortier M. Validation of the critical-care pain observation tool in adult patients. Am J Crit Care 2006; 15: 420-427.
 
2.
Chanques G, Pohlman A, Kress JP, Molinari N, de Jong A, Jaber S, et al. Psychometric comparison of three behavioural scales for the assessment of pain in critically ill patients unable to self-report. Crit Care 2014; 18: R160. DOI: 10.1186/cc14000.
 
3.
Shahiri TS, Gélinas C. The validity of vital signs for pain assessment in critically ill adults: a narrative review. Pain Manag Nurs 2023; 24: 318-328. DOI: 10.1016/j.pmn.2023.01.004.
 
4.
Devlin JW, Skrobik Y, Gélinas C, Needham DM, Slooter AJC, Pandharipande PP, et al. Clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med 2018; 46: e825-e873. DOI: 10.1097/CCM.0000000000003299.
 
5.
Payen JF, Bosson JL, Chanques G, Mantz J, Labarere J. Pain assessment is associated with decreased duration of mechanical ventilation in the intensive care unit: a post hoc analysis of the DOLOREA study. Anesthesiology 2009; 111: 1308-1316. DOI: 10.1097/ALN.0b013e3181c0d4f0.
 
6.
Payen JF, Bru O, Bosson JL, Lagrasta A, Novel E, Deschaux I, et al. Assessing pain in critically ill sedated patients by using a beha­vioral pain scale. Crit Care Med 2001; 29: 2258-2263. DOI: 10.1097/00003246-200112000-00004.
 
7.
Ahlers SJGM, van der Veen AM, van Dijk M, Tibboel D, Knibbe CAJ. The use of the Behavioral Pain Scale to assess pain in conscious sedated patients. Anesth Analg 2010; 110: 127-133. DOI: 10.1213/ANE.0b013e3181c3119e.
 
8.
Rahu MA, Grap MJ, Ferguson P, Joseph P, Sherman S, Elswick RK. Validity and sensitivity of 6 pain scales in critically ill, intubated adults. Am J Crit Care 2015; 24: 514-523. DOI: 10.4037/ajcc2015832.
 
9.
Rijkenberg S, Stilma W, Bosman RJ, van der Meer NJ, van der Voort PHJ. Pain measurement in mechanically ventilated patients after cardiac surgery: comparison of the Behavioral Pain Scale (BPS) and the Critical-Care Pain Observation Tool (CPOT). J Cardiothorac Vasc Anesth 2017; 31: 1227-1234. DOI: 10.1053/j.jvca.2017.03.013.
 
10.
Thomas D, Kuruppasseril AJ, Samad RA, George EJ. Comparative accuracy of CPOT, BPS, and NVPS for pain assessment in mechanically ventilated ICU patients: a prospective observational study. Indian J Crit Care Med 2025; 29: 492-497. DOI: 10.5005/jp-journals-10071-24984.
 
11.
Loggia ML, Juneau M, Bushnell CM. Autonomic responses to heat pain: Heart rate, skin conductance, and their relation to verbal ratings and stimulus intensity. Pain 2011; 152: 592-598. DOI: 10.1016/j.pain.2010.11.032.
 
12.
Wujtewicz M, Owczuk R. Heart rate variability in anaesthesiology – narrative review. Anaesthesiol Intensive Ther 2023; 55: 1-8. DOI: 10.5114/ait.2023.126309.
 
13.
Packiasabapathy S, Rangasamy V, Sadhasivam S. Pupillometry in perioperative medicine: a narrative review. Can J Anesth 2021; 68: 566-578. DOI: 10.1007/s12630-020-01905-z.
 
14.
Storm H. Changes in skin conductance as a tool to monitor nociceptive stimulation and pain. Curr Opin Anesthesiol 2008; 21: 796-804. DOI: 10.1097/ACO.0b013e3283183fe4.
 
15.
Günther AC, Bottai M, Schandl AR, Storm H, Rossi P, Sackey PV. Palmar skin conductance variability and the relation to stimulation, pain and the motor activity assessment scale in intensive care unit patients. Crit Care 2013; 17: R51. DOI: 10.1186/cc12571.
 
16.
Xu X, Zhang XF, Yu ZH, Liu J, Nie L, Song JL. Comparison of surgical pleth index-guided analgesia versus conventional analgesia technique in general anesthesia surgeries: A systematic review and meta-analysis. J Clin Anesth 2025; 103: 111800. DOI: 10.1016/j.jclinane.2025.111800.
 
17.
Ledowski T, Averhoff L, Tiong WS, Lee C. Analgesia Nociception Index (ANI) to predict intraoperative haemodynamic changes: results of a pilot investigation: ANI to predict haemodynamic changes. Acta Anaesthesiol Scand 2014; 58: 74-79. DOI: 10.1111/aas.12216.
 
18.
Oh SK, Won YJ, Lim BG. Surgical pleth index monitoring in perioperative pain management: usefulness and limitations. Korean J Anesthesiol 2024; 77: 31-45. DOI: 10.4097/kja.23158.
 
19.
Lukaszewicz AC, Dereu D, Gayat E, Payen D. The relevance of pupillometry for evaluation of analgesia before noxious procedures in the intensive care unit. Anesth Analg 2015; 120: 1297-1300. DOI: 10.1213/ANE.0000000000000609.
 
20.
Ben-Israel N, Kliger M, Zuckerman G, Katz Y, Edry R. Monitoring the nociception level: a multi-parameter approach. J Clin Monit Comput 2013; 27: 659-668. DOI: 10.1007/s10877-013-9487-9.
 
21.
Ledowski T, Schneider M, Gruenewald M, Goyal RK, Teo SR, Hruby J. Surgical pleth index: prospective validation of the score to predict moderate-to-severe postoperative pain. Br J Anaesth 2019; 123: 328-332. DOI: 10.1016/j.bja.2018.10.066.
 
22.
Ledowski T. Objective monitoring of nociception: a review of current commercial solutions. Br J Anaesth 2019; 123: e312-e321. DOI: 10.1016/j.bja.2019.03.024.
 
23.
Afenigus AD. Evaluating pain in non-verbal critical care patients: a narrative review of the Critical Care Pain Observation Tool and its clinical applications. Front Pain Res 2024; 5: 1481085. DOI: 10.3389/fpain.2024.1481085.
 
24.
Arbour C, Gélinas C. Are vital signs valid indicators for the assessment of pain in postoperative cardiac surgery ICU adults? Intensive Crit Care Nurs 2010; 26: 83-90. DOI: 10.1016/j.iccn.2009.11.003.
 
25.
Wildemeersch D, Peeters N, Saldien V, Vercauteren M, Hans G. Pain assessment by pupil dilation reflex in response to noxious stimulation in anaesthetized adults. Acta Anaesthesiol Scand 2018; 62: 1050-1056. DOI: 10.1111/aas.13129.
 
26.
van Vlaenderen D, Hans G, Saldien V, Wildemeersch D. Pupillary reflex dilation and pain index evaluation during general anesthesia using sufentanil: a double-blind randomized controlled trial. Pain Manag 2022; 12: 931-941. DOI: 10.2217/pmt-2022-0027.
 
27.
Sabourdin N, Del Bove L, Louvet N, Luzon-Chetrit S, Tavernier B, Constant I. Relationship between pre-incision Pupillary Pain Index and post-incision heart rate and pupillary diameter variation in children. Pediatr Anesth 2021; 31: 1121-1128. DOI: 10.1111/pan.14253.
 
28.
Berthoud V, Nguyen M, Appriou A, Ellouze O, Radhouani M, Constandache T, et al. Pupillometry pain index decreases intraoperative sufentanil administration in cardiac surgery: a prospective randomized study. Sci Rep 2020; 10: 21056. DOI: 10.1038/s41598-020-78221-5.
 
29.
Paulus J, Roquilly A, Beloeil H, Théraud J, Asehnoune K, Lejus C. Pupillary reflex measurement predicts insufficient analgesia before endotracheal suctioning in critically ill patients. Crit Care 2013; 17: R161. DOI: 10.1186/cc12840.
 
30.
Martinelli M, Trinchero V, Silvetti S. Nociception monitoring. In: Fast-Track in Cardiac Anesthesia: Cardiac Surgery in the Era of ERAS. Springer Nature; 2024, p. 129-141.
 
31.
Hung KC, Huang YT, Kuo JR, Hsu CW, Yew M, Chen JY, et al. Elevated surgical pleth index at the end of surgery is associated with postoperative moderate-to-severe pain: a systematic review and meta-analysis. Diagnostics 2022; 12: 2167. DOI: 10.3390/diagnostics-12092167.
 
32.
Hum B, Christophides A, Jin Z, Elias M, Taneja K, Bergese SD. The validity and applications of the analgesia nociception index: a narrative review. Front Surg 2023; 10: 1234246.
 
33.
Hureau M, Caillau E, Labreuche J, Herbet M, Tavernier B, De Jonckheere J, et al. Clinical efficacy and safety of automatic remifentanil administration based on Analgesia Nociception Index monitoring during burn surgery under propofol anesthesia: a randomized controlled clinical trial. PLoS One 2025; 20: e0322384.
 
34.
Kim MK, Choi GJ, Oh KS, Lee SP, Kang H. Pain assessment using the Analgesia Nociception Index (ANI) in patients undergoing general anesthesia: a systematic review and meta-analysis. J Pers Med 2023; 13: 1461.
 
35.
Sakthivel M, Su V, Nataraja RM, Pacilli M. Newborn and Infant Parasympathetic Evaluation (NIPETM) monitor for assessing pain during surgery and interventional procedures: a systematic review. J Pediatr Surg 2024; 59: 672-677.
 
36.
Bonvecchio E, Vailati D, Mura FD, Marino G. Nociception level index variations in ICU: curarized vs non-curarized patients – a pilot study. J Anesth Analg Crit Care 2024; 4: 57.
 
37.
Jung K, Park MH, Kim DK, Kim BJ. Prediction of postoperative pain and opioid consumption using intraoperative surgical pleth index after surgical incision: an observational study. J Pain Res 2020; 13: 2815-2824.
 
38.
Badam B, Shah B, Salim R, Pramanik P. Perfusion index as a valuable tool to assess analgesia during laparoscopic surgeries under general anesthesia. APICare 2025; 29: 541-547.
 
39.
Chu CL, Huang YY, Chen YH, Lai LP, Yeh HM. An observational study: The utility of perfusion index as a discharge criterion for pain assessment in the postanesthesia care unit. PLoS One 2018; 13: e0197630.
 
40.
Duran HT, Kızılkaya M, Durak IC, Hünük O, Taştan S, Kahveci M, et al. Perfusion index in the follow-up of postoperative pain: hypertensive patient sample. Signa Vitae 2025; 21: 105-110.
 
41.
Chen X, Thee C, Gruenewald M, Wnent J, Illies C, Hoecker J. Comparison of surgical stress index-guided analgesia with standard clinical practice during routine general anesthesia: a pilot study. Anesthesiology 2010; 112: 1175-1183.
 
42.
Bergmann I, Göhner A, Crozier TA, Hesjedal B, Wiese CH, Popov AF. Surgical pleth index-guided remifentanil administration reduces remifentanil and propofol consumption and shortens recovery times in outpatient anaesthesia. Br J Anaesth 2013; 110: 622-628.
 
43.
Won YJ, Lim BG, Lee SH, Park S, Kim H, Lee IO. Comparison of relative oxycodone consumption in surgical pleth index-guided analgesia versus conventional analgesia during sevoflurane anesthesia: a randomized controlled trial. Medicine (Baltimore) 2016; 95: 4743.
 
44.
Guo J, Zhu W, Shi Q, Bao F, Xu J. Effect of surgical pleth index-guided analgesia versus conventional analgesia techniques on fentanyl consumption under multimodal analgesia in laparoscopic cholecystectomy: a prospective, randomized and controlled study. BMC Anesthesiol 2021; 21: 167.
 
45.
Gruenewald M, Willms S, Broch O, Kott M, Steinfath M, Bein B. Sufentanil administration guided by surgical pleth index vs standard practice during sevoflurane anaesthesia: a randomized controlled pilot study. Br J Anaesth 2014; 112: 898-905.
 
46.
Colombo R, Raimondi F, Rech R, Castelli A, Fossali T, Marchi A. Surgical Pleth Index guided analgesia blunts the intraoperative sympathetic response to laparoscopic cholecystectomy. Minerva Anestesiol 2015; 81: 837-845.
 
47.
Edry R, Recea V, Dikust Y, Sessler DI. Preliminary intraoperative validation of the Nociception Level Index: a noninvasive nociception monitor. Anesthesiology 2016; 125: 193-203.
 
48.
Stöckle PA, Julien M, Issa R, Décary E, Brulotte V, Drolet P, et al. Validation of the PMD100 and its NOL Index to detect nociception at different infusion regimen of remifentanil in patients under general anesthesia. Minerva Anestesiol 2018; 84: 1160-1168.
 
49.
Fuica R, Krochek C, Weissbrod R, Greenman D, Freundlich A, Gozal Y. Reduced postoperative pain in patients receiving nociception monitor guided analgesia during elective major abdominal surgery: a randomized, controlled trial. J Clin Monit Comput 2023; 37: 481-491. DOI: 10.1007/s10877-022-00906-1.
 
50.
Meijer FS, Honing M, Roor T, Toet S, Calis P, Olofsen E, et al. Reduced postoperative pain using nociception level-guided fentanyl dosing during sevoflurane anaesthesia: a randomised controlled trial. Br J Anaesth 2020; 125: 1070-1078. DOI: 10.1016/j.bja.2020.07.057.
 
51.
Espitalier F, Idrissi M, Fortier A, Bélanger MÈ, Carrara L, Dakhlallah S, et al. Impact of Nociception Level (NOL) index intraoperative guidance of fentanyl administration on opioid consumption, postoperative pain scores and recovery in patients undergoing gynecological laparoscopic surgery. A randomized controlled trial. J Clin Anesth 2021; 75: 110497. DOI: 10.1016/j.jclinane.2021.110497.
 
52.
Meijer FS, Martini CH, Broens S, Boon M, Niesters M, Aarts L, et al. Nociception-guided versus standard care during remifentanil-propofol anesthesia: a randomized controlled trial. Anesthesiology 2019; 130: 745-755. DOI: 10.1097/ALN.0000000000002634.
 
53.
Gélinas C, Shahiri TS, Richard-Lalonde M, Laporta D, Morin JF, Boitor M, et al. Exploration of a multi-parameter technology for pain assessment in postoperative patients after cardiac surgery in the intensive care unit: The Nociception Level Index (NOLTM). J Pain Res 2021; 14: 3723-3731. DOI: 10.2147/JPR.S332845.
 
54.
Ruetzler K, Montalvo M, Bakal O, Essber H, Rössler J, Mascha EJ, et al. Nociception Level Index-guided intraoperative analgesia for improved postoperative recovery: a randomized trial. Anesth Analg 2023; 136: 761-771. DOI: 10.1213/ANE.0000000000006351.
 
55.
Gélinas C, Shahiri TS, Wang HT, Gallani MC, Oulehri W, Laporta D, et al. Validation of the Nociception Level Index for the detection of nociception and pain in critically ill adults: protocol for an observational study. JMIR Res Protoc 2025; 14: e60672.
 
56.
Bornemann-Cimenti H, Lang-Illievich K, Kovalevska K, Brenna CTA, Klivinyi C. Effect of nociception level index-guided intra-operative analgesia on early postoperative pain and opioid consumption: a systematic review and meta-analysis. Anaesth 2023; 78: 1493-1501.
 
57.
Quigley C, Arnau S, Gruber T. Forgotten rhythms? Revisiting the first evidence for rhythms in cognition. Eur J Neurosci 2022; 55: 3266-3276.
 
58.
Stone JL. Early history of electroencephalography and establishment of the American Clinical Neurophysiology Society. J Clin Neurophysiol 2013; 30: 28-44. DOI: 10.1097/WNP.0b013e31827edb2d.
 
59.
Ploner M, Sorg C, Gross J. Brain rhythms of pain. Trends Cog Sci 2017; 21: 100-110. DOI: 10.1016/j.tics.2016.12.001.
 
60.
May ES, Nickel MM, Dinh ST, Tiemann L, Heitmann H, Voth I, et al. Prefrontal gamma oscillations reflect ongoing pain intensity in chronic back pain patients. Hum Brain Mapp 2019; 40: 293-305.
 
61.
Nickel MM, May ES, Tiemann L, Schmidt P, Postorino M, Ta Dinh S, et al. Brain oscillations differentially encode noxious stimulus intensity and pain intensity. Neuroimage 2017; 148: 141-147.
 
62.
Ahmad B, Barkana BD. Pain and the brain: a systematic review of methods, EEG biomarkers, limitations, and future directions. Neurol Int 2025; 17: 46.
 
63.
Chouchou F, Perchet C, Garcia-Larrea L. EEG changes reflecting pain: Is alpha suppression better than gamma enhancement? Neuro­physiol Clin 2021; 51: 291-299.
 
64.
Misra G, Wang WE, Archer DB, Roy A, Coombes SA. Automated classification of pain perception using high-density electroencephalography data. J Neurophysiol 2017; 117: 786-795.
 
65.
Frot M, Faillenot I, Mauguière F. Processing of nociceptive input from posterior to anterior insula in humans. Hum Brain Mapp 2014; 35: 5486-5499.
 
66.
Jensen EW, Valencia JF, López A, Anglada T, Agustí M, Ramos Y, et al. Monitoring hypnotic effect and nociception with two EEG-derived indices, qCON and qNOX, during general anaesthesia. Acta Anaesthesiol Scand 2014; 58: 933-941.
 
67.
Aho AJ, Yli-Hankala A, Lyytikäinen LP, Jäntti V. Facial muscle activity, Response Entropy, and State Entropy indices during noxious stimuli in propofol-nitrous oxide or propofol-nitrous oxide-remifentanil anaesthesia without neuromuscular block. Br J Anaesth 2009; 102: 227-233.
 
68.
Stewart JA, Särkelä MOK, Wennervirta J, Vakkuri AP. Novel insights on association and reactivity of Bispectral Index, frontal electromyogram, and autonomic responses in nociception-sedation monitoring of critical care patients. BMC Anesthesiol 2022; 22: 353.
 
69.
Jiang Y, Ding JM, Hao XX, Fang PP, Liu XS. EEG-derived pain threshold index-guided versus standard care during propofol-remifentanil anesthesia: a randomized controlled trial. Heliyon 2023; 9: e18604. DOI: 10.1016/j.heliyon.2023.e18604.
 
70.
Slater R, Cantarella A, Gallella S, Worley A, Boyd S, Meek J, et al. Cortical pain responses in human infants. J Neurosci 2006; 26: 3662-3666. DOI: 10.1523/JNEUROSCI.0348-06.2006.
 
71.
Slater R, Worley A, Fabrizi L, Roberts S, Meek J, Boyd S, et al. Evoked potentials generated by noxious stimulation in the human infant brain. Eur J Pain 2010; 14: 321-326. DOI: 10.1016/j.ejpain.2009.05.005.
 
72.
Goksan S, Hartley C, Emery F, Cockrill N, Poorun R, Moultrie F, et al. fMRI reveals neural activity overlap between adult and infant pain. Elife 2015; 4: e06356. DOI: 10.7554/eLife.06356.
 
73.
Ranger M, Johnston CC, Limperopoulos C, Rennick JE, du Plessis AJ. Cerebral near-infrared spectroscopy as a measure of nociceptive evoked activity in critically ill infants. Pain Res Manag 2011; 16: 331-336. DOI: 10.1155/2011/891548.
 
74.
Ranger M, Chau CMY, Garg A, Woodward TS, Beg MF, Bjornson B, et al. Cerebral hemodynamic response to a therapeutic bed for procedural pain management in preterm infants in the NICU: a randomized controlled trial. Pain Rep 2021; 6: e890. DOI: 10.1097/PR9.0000000000000890.
 
75.
Yuan I, Nelson O, Barr GA, Zhang B, Topjian AA, Lang SS, et al. Functional near-infrared spectroscopy to assess pain in neonatal circumcisions. Pediatr Anesth 2022; 32: 404-412. DOI: 10.1111/pan.14326.
 
76.
Du J, Shi P, Fang F, Yu H. Cerebral cortical hemodynamic metrics to aid in assessing pain levels? A pilot study of functional near-infrared spectroscopy. Front Neurosci 2023; 17: 1136820. DOI: 10.3389/fnins.2023.1136820.
 
77.
Becerra L, Aasted CM, Boas DA, George E, Yücel MA, Kussman BD, et al. Brain measures of nociception using near-infrared spectroscopy in patients undergoing routine screening colonoscopy. Pain 2016; 157: 840-848. DOI: 10.1097/j.pain.0000000000000446.
 
78.
Green S, Aasted CM, De Boissezon X, Becerra L, Borsook D, Boas DA. fNIRS brain measures of ongoing nociception during surgical incisions under anesthesia. Neurophotonics 2022; 9: 015002. DOI: 10.1117/1.NPh.9.1.015002.
 
79.
Kussman BD, Aasted CM, Yücel MA, Steele SC, Alexander ME, Boas DA, et al. Capturing pain in the cortex during general anesthesia: near infrared spectroscopy measures in patients undergoing catheter ablation of arrhythmias. PLoS One 2016; 11: e0158975. DOI: 10.1371/journal.pone.0158975.
 
80.
Karunakaran KD, Kussman BD, Peng K, Becerra L, Labadie R, Bernier R, et al. Brain-based measures of nociception during general anesthesia with remifentanil: a randomized controlled trial. PLoS Med 2022; 19: e1003965. DOI: 10.1371/journal.pmed.1003965.
 
81.
Shafiei SB, Shadpour S, Pangburn B, Bentley-McLachlan M, de Leon-Casasola O. Pain classification using functional near-infrared spectroscopy and assessment of virtual reality effects in cancer pain management. Sci Rep 2025; 15: 8954. DOI: 10.1038/s41598-025-93678-y.
 
82.
Werner P, Lopez-Martinez D, Walter S, Al-Hamadi A, Gruss S, Picard RW. Automatic recognition methods supporting pain assessment: a survey. IEEE Trans Affective Comput 2022; 13: 530-552.
 
83.
Sampson EL, Davies N, Vickerstaff V. Evaluation of the psychometric properties of PainChek in older general hospital patients with dementia. Age Ageing 2025; 54: afaf027. DOI: 10.1093/ageing/afaf027.
 
84.
Tan CW, Du T, Teo JC, Chan DXH, Kong WM, Sng BL, et al. Automated pain detection using facial expression in adult patients with a customized spatial temporal attention long short-term memory (STA-LSTM) network. Sci Rep 2025; 15: 13429. DOI: 10.1038/s41598-025-97885-5.
 
85.
Bellal M, Lelandais J, Chabin T, Heudron A, Gourmelon T, Bauduin P, et al. Calibration trial of an innovative medical device (NEVVA®) for the evaluation of pain in non-communicating patients in the intensive care unit. Front Med (Lausanne) 2024; 11: 1309720. DOI: 10.3389/fmed.2024.1309720.
 
86.
Gkikas S, Tachos NS, Andreadis S, Pezoulas VC, Zaridis D, Gkois G, et al. Multimodal automatic assessment of acute pain through facial videos and heart rate signals utilizing transformer-based architectures. Front Pain Res (Lausanne) 2024; 5: 1372814. DOI: 10.3389/fpain.2024.1372814.
 
87.
Sjoding MW, Dickson RP, Iwashyna TJ, Gay SE, Valley TS. Racial bias in pulse oximetry measurement. N Engl J Med 2020; 383: 2477-2478. DOI: 10.1056/NEJMc2029240.
 
88.
Nazer LH, Zatarah R, Waldrip S, Ke JXC, Moukheiber M, Khanna AK, et al. Bias in artificial intelligence algorithms and recommendations for mitigation. PLoS Digit Health 2023; 2: e0000278. DOI: 10.1371/journal.pdig.0000278.
 
89.
Cohen IG, Ritzman J, Cahill RF. Ambient listening – legal and ethical issues. JAMA Netw Open 2025; 8: e2460642. DOI: 10.1001/jama­networkopen.2024.60642.
 
90.
De Sario GD, Haider CR, Maita KC, Torres-Guzman RA, Emam OS, Avila FR, et al. Using AI to detect pain through facial expressions: a review. Bioengineering 2023; 10: 548. DOI: 10.3390/bioengineering10050548.
 
91.
Peng T, Qu S, Du Z, Chen Z, Xiao T, Chen R. A systematic review of the measurement properties of face, legs, activity, cry and consolability scale for pediatric pain assessment. J Pain Res 2023; 16: 1185-1196. DOI: 10.2147/JPR.S397064.
 
92.
Sarkaria E, Gruszfeld D. Assessing neonatal pain with NIPS and COMFORT-B: evaluation of NICU’s staff competences. Pain Res Manag 2022; 2022: 8545372. DOI: 10.1155/2022/8545372.
 
93.
Loizzo A, Loizzo S, Capasso A. Neurobiology of pain in children: an overview. The Open Biochem J 2009; 3: 18-25. DOI: 10.2174/1874091X00903010018.
 
94.
Valkenburg AJ, de Leeuw TG, van Dijk M, Tibboel D. Pain in intellectually disabled children: towards evidence-based pharmacothe­rapy? Pediatric Drugs 2015; 17: 339-348. DOI: 10.1007/s40272-015-0138-0.
 
95.
El-Tallawy SN, Ahmed RS, Nagiub MS. Pain management in the most vulnerable intellectual disability: a review. Pain Ther 2023; 12: 939-961. DOI: 10.1007/s40122-023-00526-w.
 
96.
Merkel SI, Voepel-Lewis T, Shayevitz JR, Malviya S. The FLACC: a behavioral scale for scoring postoperative pain in young children. Pediatr Nurs 1997; 23: 293-297.
 
97.
Johansson M, Kokinsky E. The COMFORT behavioural scale and the modified FLACC scale in paediatric intensive care. Nurs Crit Care 2009; 14: 122-130. DOI: 10.1111/j.1478-5153.2009.00323.x.
 
98.
Hu J, Harrold J, Squires JE, Modanloo S, Harrison D. The validity of skin conductance for assessing acute pain in mechanically ventilated infants: a cross-sectional observational study. Eur J Pain 2021; 25: 1994-2006. DOI: 10.1002/ejp.1816.
 
99.
Faye PM, De Jonckheere J, Logier R, Kuissi E, Jeanne M, Rakza T, et al. Newborn infant pain assessment using heart rate variability analysis. Clin J Pain 2010; 26: 777-782. DOI: 10.1097/ajp.0b013e3181ed1058.
 
100.
Weber F, Roeleveld HG, Geerts NJE, Warmenhoven AT, Schröder R, de Leeuw TG. The heart rate variability-derived Newborn Infant Parasympathetic Evaluation (NIPETM) Index in pediatric surgical patients from 0 to 2 years under sevoflurane anesthesia – a prospective observational pilot study. Paediatr Anaesth 2019; 29: 377-384. DOI: 10.1111/pan.13613.
 
eISSN:1731-2531
ISSN:1642-5758
Journals System - logo
Scroll to top