ANAESTHESIOLOGY - GENERAL ANAESTHESIA / ORIGINAL ARTICLE
Figure from article: Is general anesthesia...
 
KEYWORDS
TOPICS
ABSTRACT
Introduction:
The aim of the study was to evaluate the neurocognitive safety of two schemes of general anesthesia based on propofol or sevoflurane applied to patients undergoing laparoscopic gynecological operations, with a special focus on the patients’ age, American Society of Anesthesiologists (ASA) physical status/risk category I, II, or III, and levels of neuromarkers.

Material and methods:
The Montreal Cognitive Assessment (MoCA) was chosen for cognitive assessment. The potential neuroinjury after anesthesia and operation was assessed with a set of neuromarkers: glial fibrillary acidic protein (GFAP), neurofilament light chain (NFL), tau protein (tau), and ubiquitin C-terminal hydrolase L1 (UCH-L1). The study was conducted on a group of women with no prior neurological or psychiatric diseases.

Results:
A total of 61 patients (mean age 40.57 years) were included in the study (29 patients under propofol-based anesthesia [PBA], 32 patients under sevoflurane-based anesthesia [SBA]). The groups were demographically comparable. The patients in both groups exhibited a postoperative increase in the MoCA regardless of the type of anesthesia. The NFL and UCH-L1 levels increased significantly in both groups. The GFAP levels were significantly higher in the SBA group. Neither the age nor the increase in the neuromarkers influenced the patients’ cognition.

Conclusions:
The types of anesthesia applied in the laparoscopic gynecological operations resulted in a cognitively safe outcome despite detectable alterations in the neuromarkers.
REFERENCES (45)
1.
Pecorella G, De Rosa F, Licchelli M, Panese G, Carugno JT, Morcia- no A, Tinelli A. Postoperative cognitive disorders and delirium in gynecologic surgery: which surgery and anesthetic techniques to use to reduce the risk? Int J Gynaecol Obstet 2024; 166: 954-968. DOI: 10.1002/ijgo.15464.
 
2.
Debert CT, Stilling J, Wang M, Sajobi T, Kowalski K, Benson BW, et al. The Montreal Cognitive Assessment as a cognitive screening tool in athletes. Can J Neurol Sci 2019; 46: 311-318. DOI: 10.1017/cjn.2019.18.
 
3.
Ciesielska N, Sokołowski R, Mazur E, Podhorecka M, Polak-Szabela A, Kędziora-Kornatowska K. Is the Montreal Cognitive Assessment (MoCA) test better suited than the Mini-Mental State Examination (MMSE) in mild cognitive impairment (MCI) detection among people aged over 60? Meta-analysis. Psychiatr Pol 2016; 50: 1039-1052. DOI: 10.12740/PP/45368.
 
4.
Abdelhak A, Foschi M, Abu-Rumeileh S, Yue JK, D’Anna L, Huss A, et al. Blood GFAP as an emerging biomarker in brain and spinal cord disorders. Nat Rev Neurol 2022; 18: 158-172. DOI: 10.1038/s41582-021-00616-3.
 
5.
Gattringer T, Enzinger C, Pinter D, Fandler-Höfler S, Kneihsl M, Haidegger M, et al. Serum glial fibrillary acidic protein is sensitive to acute but not chronic tissue damage in cerebral small vessel disease. J Neurol 2023; 270: 320-327. DOI: 10.1007/s00415-022-11358-7.
 
6.
Yang Z, Sreenivasan K, Toledano Strom EN, Osse AML, Pasia LG, et al. Clinical and biological relevance of glial fibrillary acidic protein in Alzheimer’s disease. Alzheimers Res Ther 2023; 15: 190. DOI: 10.1186/s13195-023-01340-4.
 
7.
Aktas O, Renner A, Huss A, Filser M, Baetge S, Stute N, et al. Serum neurofilament light chain. No clear relation to cognition and neuropsychiatric symptoms in stable MS. Neurol Neuroimmunol Neuroinflamm 2020; 7: e885. DOI: 10.1212/NXI.0000000000000885.
 
8.
Bergman J, Dring A, Zetterberg H, Blennow K, Norgren N, Gilthor- pe N, et al. Naurofilament light chain in CSF and serum is a sensitive marker for axonal white matter injury in MS. Neurol Neuroimmunol Neuroinflamm 2016; 3: e271. DOI: 10.1212/NXI.0000000000000271.
 
9.
Dong Y, Hou T, Li Y, Liu R, Cong L, Liu K, et al. Plasma amyloid-β, total tau, and neurofilament light chain across the Alzheimer’s disease clinical spectrum: a population-based study. J Alzheimers Dis 2023; 96: 845-858. DOI: 10.3233/JAD-230932.
 
10.
Guo T, Noble W, Hanger DP. Roles of tau protein in health and disease. Acta Neuropathol 2017; 133: 665-704. DOI: 10.1007/s00401-017-1707-9.
 
11.
Bishop P, Rocca D, Henley JM. Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction. Biochem J 2016; 473: 2453-2462. DOI: 10.1042/BCJ20160082.
 
12.
Murman DL. The impact of age on cognition. Semin Hear 2015; 36: 111-121. DOI: 10.1055/s-0035-1555115.
 
13.
Johnson T, Monk T, Rasmussen LS, Abildstrom H, Houx P, Korttila K, et al. Postoperative cognitive dysfunction in middle-aged patients. Anesthesiology 2002; 96: 1351-1357. DOI: 10.1097/00000542-200206000-00014.
 
14.
Beck AT, Steer RA, Brown GK. BDI-II. Polish version: Łojek E, Stańczak J. Wydanie drugie. Pracownia Testów Psychologicznych PTP; 2019.
 
15.
Bętkowska-Korpała B, Modrzyński R, Kotowska J, Olszewska K, Celebucka J. Diagnostic interview on alcohol use disorder – DSM-5 classification in the context of addiction treatment challenges. Psychoterapia 2019; 188: 75-91. DOI: 10.12740/PT/108617.
 
16.
Gierus J, Mosiołek A, Koweszko T, Kozyra O, Wnukiewicz P, Łoza B, et al. The Montreal Cognitive Assessment 7.2 – Polish adaptation and research on equivalency. Psychiatr Pol 2015; 49: 171-179. DOI: 10.12740/PP/24748.
 
17.
Oliveira NL, Pereira CAB, Diniz MA, Polpo A. A discussion on significance indices for contingency tables under small sample sizes. PLoS One 2018; 13: e0199102. DOI: 10.1371/journal.pone.0199102.
 
18.
Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods 2009; 41: 1149-1160. DOI: https://doi.org/10.3758/BRM.41....
 
19.
Farrer TJ, Monk TG, McDonagh DL, Martin G, Pieper CF, Koltai D. A prospective randomized study examining the impact of intravenous versus inhalational anesthesia on postoperative cognitive decline and delirium. Appl Neuropsychol Adult 2025; 32: 1155-1161. DOI: 10.1080/23279095.2023.2246612.
 
20.
Shu AH, Wang Q, Chen XB. Effect of different depths of anesthesia on postoperative cognitive function in laparoscopic patients: a rando­mized clinical trial. Curr Med Res Opin 2015: 31: 1883-1887. DOI: 10.1185/03007995.2015.1075968.
 
21.
Wu Y, Yu C, Gao F. Risk factors for postoperative cognitive dysfunction in elderly patients undergoing surgery for oral malignancies. Perioper Med (Lond) 2023; 12: 42. DOI: 10.1186/s13741-023-00330-2.
 
22.
Aytaç I, Güven Aytaç B, Demirelli G, Kayar Çalılı D, Baskan S, Postacı A, et al. Comparison of postoperative cognitive decline using the Mini-Mental State Examination and Montreal Cognitive Assessment after minor elective surgery in elderly. Cureus 2021; 13: e18631. DOI: 10.7759/cureus.18631.
 
23.
Žura M, Pašalić T, Kulić A, Orešković Z, Vukušić I, Mihaljević S, et al. MoCA test and general anesthesia for a two different surgical techniques. RAD CASA – Medical Sciences 2022; 553: 16-21. DOI: 10.21857/m16wjcnkx9.
 
24.
Li T, Han W, Yang X, Wang Y, Peng L, He L, et al. Effects of different injection rates of propofol on postoperative cognition in elderly patients undergoing laparoscopic inguinal hernia repair. Drug Des Devel Ther 2023; 17: 1741-1752. DOI: 10.2147/DDDT.S407905.
 
25.
Costa AS, Fimm B, Friesen P, Soundjock H, Rottschy C, Gross T, et al. Alternate-form reliability of the Montreal cognitive assessment screening test in a clinical setting. Dement Geriatr Cogn Disord 2012; 33: 379-384. DOI: 10.1159/000340006.
 
26.
Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005; 53: 695-699. DOI: 10.1111/j.1532-5415.2005.53221.x. Erratum in: J Am Geriatr Soc 2019; 67: 1991. DOI: 10.1111/jgs.15925.
 
27.
Scharfen J, Peters JM, Holling H. Retest effects in cognitive ability tests: a meta-analysis. Intelligence 2018; 67: 44-66. DOI: 10.1016/ j.intell.2018.01.003.
 
28.
Johansson C, Aineskog H, Koskinen LD, Gunnarsson A, Lindvall P. Serum neurofilament light as a predictor of outcome in subarachnoid haemorrhage. Acta Neurochir 2023; 165: 2793-2800. DOI: 10.1007/s00701-023-05673-9.
 
29.
Faraz Ahmed T, Bilal Azmi M, Imtiaz F, Zaman U, Ahmed A, Shahbaz N. Plasma levels of phosphorylated tau and neurofilament light chain as potential biomarkers for Alzheimer’s disease: a biochemical analysis in Pakistani population. Saudi Pharm J 2023; 31: 1202-1209. DOI: 10.1016/j.jsps.2023.05.013.
 
30.
Kim JH, Jung H, Lee Y, Sohn JH. Surgery performed under propofol anesthesia induces cognitive impairment and amyloid pathology in ApoE4 knock-in mouse model. Front Aging Neurosci 2021; 13: 658860. DOI: 10.3389/fnagi.2021.658860.
 
31.
Zhang X, Fu Q. Correlation of cerebrospinal fluid amyloid β-protein 42 and neurofilament light protein levels with postoperative neurocognitive dysfunction in elderly patients. Nan Fang Yi Ke Da Xue Xue Bao 2021; 41: 574-578. DOI: 10.12122/j.issn.1673-4254.2021.04.14.
 
32.
Guo XG, Kang LQ, Wang N, Wang JX. Assessment of nucleus accumbens impairment in a rat model of postoperative cognitive dysfunction using diffusion tensor imaging. Psychogeriatrics 2023. DOI: 10.1111/psyg.12964.
 
33.
Szwed K, Szwed M, Kozakiewicz M, Karłowska-Pik J, Soja-Kukieła N, Bartoszewska A, et al. Circulating microRNAs and novel proteins as potential biomarkers of neurological complications after heart bypass surgery. J Clin Med 2021; 10: 3091. DOI: 10.3390/jcm10143091.
 
34.
Wiberg S, Holmgaard F, Zetterberg H, Nilsson JC, Kjaergaard J, Wanscher M, et al. Biomarkers of cerebral injury for prediction of postoperative cognitive dysfunction in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth 2022; 36: 125-132. DOI: 10.1053/ j.jvca.2021.05.016.
 
35.
Zheng HB, Fu YT, Wang G, Sun LH, Fan YY, Yang TW. Hyperphosphorylation of protein Tau in hippocampus may cause cognitive dysfunction of propofol-anesthetized rats. Eur Rev Med Pharmacol Sci 2018; 22: 3577-3585. DOI: 10.26355/eurrev_201806_15184.
 
36.
Liang F, Baldyga K, Quan Q, Khatri A, Choi S, Wiener-Kronish J, et al. Preoperative plasma Tau-PT217 and Tau-PT181 are associated with postoperative delirium. Ann Surg 2023; 277: e1232-e1238. DOI: 10.1097/SLA.0000000000005487.
 
37.
McKay TB, Qu J, Liang F, Mueller A, Wiener-Kronish J, Xie Z, et al. Tau as a serum biomarker of delirium after major cardiac surgery: a single centre case-control study. Br J Anaesth 2022; 129: e13-e16. DOI: 10.1016/j.bja.2022.04.002.
 
38.
Posti JP, Takala RSK, Lagerstedt L, Dickens AM, Hossain I, Mohammadian M, et al. Correlation of Blood Biomarkers and Biomarker Panels with Traumatic Findings on Computed Tomography after Traumatic Brain Injury. J Neurotrauma 2019; 36: 2178-2189. DOI: 10.1089/neu.2018.6254.
 
39.
Koivikko P, Posti JP, Mohammadian M, Lagerstedt L, Azurmendi L, Hossain I, et al. Potential of heart fatty-acid binding protein, neurofilament light, interleukin-10 and S100 calcium-binding protein B in the acute diagnostics and severity assessment of traumatic brain injury. Emerg Med J 2022; 39: 206-212. DOI: 10.1136/emermed-2020-209471.
 
40.
Wang X, Chen X, Wu F, Liu Y, Yang Y, Chen W, et al. Relationship between postoperative biomarkers of neuronal injury and postoperative cognitive dysfunction: a meta-analysis. PLoS One 2023; 18: e0284728. DOI: 10.1371/journal.pone.0284728.
 
41.
Nurcahyo WI, Hadisaputro S, Muttaqin Z, Boom CE, Manapa CH, Pramadika T, Tugasworo D. Difference in GFAP Levels in POCD and Non-POCD Patients After on Pump CABG. Vasc Health Risk Manag 2022; 18: 915-925. DOI: 10.2147/VHRM.S386791.
 
42.
Lee J, Kim HJ. Normal aging induces changes in the brain and neurodegeneration progress: review of the structural, biochemical, metabolic, cellular, and molecular changes. Front Aging Neurosci 2022; 14: 931536. DOI: 10.3389/fnagi.2022.931536.
 
43.
Gaspar-Silva F, Trigo D, Magalhaes J. Ageing in the brain: mechanisms and rejuvenating strategies. Cell Mol Life Sci 2023; 80: 190. DOI: 10.1007/s00018-023-04832-6.
 
44.
Lin X, Chen Y, Zhang P, Chen G, Zhou Y, Yu X. The potential mechanism of postoperative cognitive dysfunction in older people. Exp Gerontol 2020; 130: 110791. DOI: 10.1016/j.exger.2019.110791.
 
45.
Yang X, Huang X, Li M, Jiang Y, Zhang H. Identification of individuals at risk for postoperative cognitive dysfunction (POCD). Ther Adv Neurol Disord 2022; 15: 17562864221114356. DOI: 10.1177/ 17562864221114356.
 
eISSN:1731-2531
ISSN:1642-5758
Journals System - logo
Scroll to top