PAEDIATRIC ANAESTHESIA AND CRITICAL CARE / ORIGINAL ARTICLE
Figure from article: The ROSE framework for...
 
KEYWORDS
TOPICS
ABSTRACT
Introduction:
The study aimed to assess the applicability of the ROSE conceptual framework (Resuscitation, Optimization, Stabilization, Evacuation) for fluid therapy in critically ill pediatric patients, focusing on its distinct phases, prevention of fluid accumulation, and clinical outcomes.

Material and methods:
A quasi-experimental study was conducted including 122 (retrospective: n = 71; prospective: n = 51) mechanically ventilated and vasoactive-dependent children. A retrospective cohort was compared with a prospective cohort following structured training on ROSE-guided fluid management. Outcomes included fluid accumulation percentage (FA%), duration of mechanical ventilation, pediatric intensive care unit (PICU) length of stay, and need for renal replacement therapy (RRT). Adherence to phase-specific FA% targets was also assessed.

Results:
FA% was similar between cohorts (retrospective vs. prospective) on PICU days 1, 3, and 10 (median [IQR] 1.8% [0.2–4.3] vs. 1.9% [0.8–3.2], P = 0.934; 5.5% [1.7–10.3] vs. 6.1% [3.8–10.2], P = 0.565; 8.3% [0.8–24.8] vs. 7.2% [2.6–18.7], P = 0.848). By ROSE phase, FA% was comparable in Resuscitation (3.5% [2.0–6.0] vs. 4.7% [2.4–6.9], P = 0.244), Optimization (3.0% [0.1–6.7] vs. 4.2% [1.0–7.9], P = 0.261), and Evacuation (2.5% [−2.6–5.3] vs. 2.4% [−0.0–7.4], P = 0.256), but higher during Stabilization (2.5% [0.0–6.9] vs. 4.2% [2.0–8.9], P = 0.043). Mechanical ventilation, length of PICU stay, RRT, and fluid elimination were similar. No independent predictors emerged in logistic regression. FA% target adherence rose from 67.9% to 72.4% after ROSE.

Conclusions:
The ROSE framework in pediatric fluid management is feasible, provides benchmarking for FA% control, and shows promise for individualizing fluid management. Future validation in ROSE-naive centers is warranted.
REFERENCES (31)
1.
Weiss SL, Peters MJ, Alhazzani W, Agus MS, Flori HR, Inwald DP, et al. Surviving Sepsis Campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Pediatr Crit Care Med 2020; 21: e52-e106. DOI: 10.1097/PCC.0000000000002198.
 
2.
Pfortmueller CA, Dabrowski W, Wise R, Regenmortel NV, Malbrain ML. Fluid accumulation syndrome in sepsis and septic shock: pathophysiology, relevance and treatment – a comprehensive review. Ann Intensive Care 2024; 14: 115. DOI: 10.1186/s13613-024-01336-9.
 
3.
Hoste EA, Maitland K, Brudney CS, Mehta R, Vincent JL, Yates D, et al. Four phases of intravenous fluid therapy: a conceptual model. Br J Anaesth 2014; 113: 740-747. DOI: 10.1093/bja/aeu300.
 
4.
Malbrain ML, Van Regenmortel N, Saugel B, De Tavernier B, Van Gall PJ, Joannes-Boyau O, et al. Principles of fluid management and stewardship in septic shock: it is time to consider the four D’s and the four phases of fluid therapy. Ann Intensive Care 2018; 8: 66. DOI: 10.1186/s13613-018-0402-x.
 
5.
Vandervelden S, Malbrain ML. Initial resuscitation from severe sepsis: one size does not fit all. Anaesthesiol Intensive Ther 2015; 47 Spec No: 44-55. DOI: 10.5603/AIT.a2015.0075.
 
6.
Saugel B, Trepte CJ, Heckel K, Wagner JY, Reauter DA. Hemodynamic management of septic shock: is it time for individualized goal-directed hemodynamic therapy and for specifically targeting the microcirculation? Shock 2015; 43: 522-529. DOI: 10.1097/SHK.0000000000000345.
 
7.
Malbrain ML, Marik PE, Witters I, Cordemans C, Kirkpatrick AW, Roberts DJ, et al. Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients: a systematic review with suggestions for clinical practice. Anaesthesiol Intensive Ther 2014; 46: 361-380. DOI: 10.5603/AIT.2014.0060.
 
8.
Malbrain ML, Martin G, Ostermann M. Everything you need to know about deresuscitation. Intensive Care Med 2022; 48: 1781-1786. DOI: 10.1007/s00134-022-06761-7.
 
9.
Li Y, Wang J, Bai Z, Chen J, Wang X, Pan J, et al. Early fluid overload is associated with acute kidney injury and PICU mortality in critically ill children. Eur J Pediatr 2016; 175: 39-48. DOI: 10.1007/s00431-015-2592-7.
 
10.
Monteiro JN, Goraksha SU. ‘ROSE concept’ of fluid management: relevance in neuroanaesthesia and neurocritical care. J Neuroanaesth Crit Care 2017; 4: 11-16. DOI: 10.4103/2348-0548.197435.
 
11.
Crosignani A, Spina S, Marrazzo F, Cimbanassi S, Malbrain ML, Van Regenmortel N, et al. Intravenous fluid therapy in patients with severe acute pancreatitis admitted to the intensive care unit: a narrative review. Ann Intensive Care 2022; 12: 98. DOI: 10.1186/s13613-022-01072-y.
 
12.
Wise R, Faurie M, Malbrain ML, Hodgson E. Strategies for intravenous fluid resuscitation in trauma patients. World J Surg 2017; 41: 1170-1183. DOI: 10.1007/s00268-016-3865-7.
 
13.
Goldstein S, Bagshaw S, Cecconi M, Okusa M, Wang H, Kellum J, et al. Pharmacological management of fluid overload. Br J Anaesth 2014; 113: 756-763. DOI: 10.1093/bja/aeu299.
 
14.
Kiyatkin ME, Bakker J. Lactate and microcirculation as suitable targets for hemodynamic optimization in resuscitation of circulatory shock. Curr Opin Crit Care 2017; 23: 348-354. DOI: 10.1097/MCC.0000000000000423.
 
15.
Sankar J, Das RR, Banothu KK. Fluid resuscitation in children with severe infection and septic shock: a systematic review and meta-analysis. Eur J Pediatr 2024; 183: 3925-3932. DOI: 10.1007/s00431-024-05653-w.
 
16.
Gan H, Cannesson M, Chandler JR, Ansermino JM. Predicting fluid responsiveness in children: a systematic review. Anesth Analg 2013; 117: 1380-1392. DOI: 10.1213/ANE.0b013e3182a9557e.
 
17.
Maitland K, Kiguli S, Opoka RO, Engoru C, Oloput-Ooput P, Akech SO, et al. Mortality after fluid bolus in African children with severe infection. N Engl J Med 2011; 364: 2483-2495. DOI: 10.1056/NEJMoa1101549.
 
18.
Vijendra B, Bertol AB, de Almeida MMG, Gil de Freitas PH, Simão AA, Faria BL. Balanced crystalloid versus saline for resuscitation in pediatric septic shock: a systematic review and meta-analysis. BMC Pediatr 2025; 25: 81. DOI: 10.1186/s12887-025-05442-w.
 
19.
Rao SB, Akhondi-Asl A, Mehta N, Yang Y. Association between early fluid overload and clinical outcomes in a pediatric ICU. Pediatr Res 2025. DOI: 10.1038/s41390-025-04218-3.
 
20.
Lima L, Menon S, Goldstein SL, Basu RK. Timing of fluid overload and association with patient outcome. Renal Critical Care 2021; 22: 114-124. DOI: 10.1097/PCC.0000000000002547.
 
21.
Alobaidi R, Basu RK, DeCaen A, Joffe AR, Lequier L, Pannu N, et al. Fluid accumulation in critically ill children. Crit Care Med 2020; 48: 1034-1041. DOI: 10.1097/CCM.0000000000004376.
 
22.
Gelbart B, Serpa Neto A, Stephens D, Thompson J, Bellomo R, Butt W, et al. Fluid accumulation in mechanically ventilated, critically ill children: retrospective cohort study of prevalence and outcome. Pediatr Crit Care Med 2022; 23: 990-998. DOI: 10.1097/PCC.0000000000003047.
 
23.
Selewski DT, Gist KM, Basu RK, Goldstein SL, Zappitelli M, Soranno DE, et al. Impact of the magnitude and timing of fluid overload on outcomes in critically ill children: a report from the AWARE study. Crit Care Med 2023; 51: 606-618. DOI: 10.1097/CCM.0000000000005791.
 
24.
Lucas CE, Ledgerwood AM. FFP: RBC resuscitation ratio and post-shock fluid uptake. JAMA Surg 2013; 148: 239-244. DOI: 10.1001/jamasurg.2013.623.
 
25.
Zampieri FG, Bagshaw SM, Semler MW. Fluid therapy for critically ill adults with sepsis: a review. JAMA 2023; 329: 1967-1980. DOI: 10.1001/jama.2023.7560.
 
26.
Annane D, Siami S, Jaber S, Martin C, Elatrous S, Declere AD, et al. Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock: the CRISTAL randomized trial. JAMA 2013; 310: 1809-1817. DOI: 10.1001/jama.2013.280502.
 
27.
LaGrone LN, Stein D, Cribari C, Kaups K, Harris C, Miller AN, et al. Clinical protocol for damage-control resuscitation for the adult trauma patient: American Association for the Surgery of Trauma/American College of Surgeons Committee on Trauma. J Trauma Acute Care Surg 2024; 96: 510-520. DOI: 10.1097/TA.0000000000004088.
 
28.
Bednarczyk JM, Fridfinnson JA, Kumar A, Blanchard L, Rabbani R, Bell D, et al. Incorporating dynamic assessment of fluid responsiveness into goal-directed therapy: a systematic review and meta-analysis. Crit Care Med 2017; 45: 1538-1545. DOI: 10.1097/CCM.0000000000002554.
 
29.
Douglas IS, Alapat PM, Corl KA, Exline MC, Forni LG, Holder AL, et al. Fluid response evaluation in sepsis hypotension and shock: a randomized clinical trial. Chest 2020; 158: 1431-1445. DOI: 10.1016/j.chest.2020.04.025.
 
30.
Silversides JA, Major E, Ferguson AJ, Mann EE, McAuley DF, Marshall JC, et al. Conservative fluid management or deresuscitation for patients with sepsis or acute respiratory distress syndrome following the resuscitation phase of critical illness: a systematic review and meta-analysis. Intensive Care Med 2017; 43: 155-170. DOI: 10.1007/s00134-016-4573-3.
 
31.
Malbrain ML, Langer T, Annane D, Gattinoni L, Elbers P, Hahn RG, et al. Intravenous fluid therapy in the perioperative and critical care setting: Executive summary of the International Fluid Academy (IFA). Ann Intensive Care 2020; 10: 64. DOI: 10.1186/s13613-020-00679-3.
 
eISSN:1731-2531
ISSN:1642-5758
Journals System - logo
Scroll to top