CRITICAL CARE - ADULTS / ORIGINAL ARTICLE
Influence of the end inspiratory pause on ventilatory efficiency and respiratory mechanics in patients undergoing robotic surgery under a tailored open lung approach: a prospective-paired study
More details
Hide details
1
Department of Anesthesiology and Resuscitation, Hospital Universitario Virgen del Rocío, Seville, Spain
Submission date: 2025-02-12
Final revision date: 2025-08-04
Acceptance date: 2025-08-13
Publication date: 2025-09-19
Corresponding author
Manuel de la Matta
Department of Anesthesiology
and Resuscitation, Hospital Universitario Virgen
del Rocío, Seville, Spain
Anaesthesiol Intensive Ther 2025;57(1):239-247
KEYWORDS
TOPICS
ABSTRACT
Introduction:
The effect of modifying the end inspiratory pause (EIP) on the variations
in the physiological dead space (VDphys) in patients undergoing robotic surgery ventilated under a tailored open lung approach has not been addressed before.
Material and methods:
This prospective-paired study was carried out in a tertiary hospital. Following an alveolar recruitment manoeuvre (ARM) and the application of a tailored open-lung positive end-expiratory pressure (PEEPOL), participants consecutively received three
EIP levels (30%, 40%, and 10%). The sequence was repeated after pneumoperitoneum and the Trendelenburg position and following a second ARM for patients with suspected lung collapse based on an Air test.
Results:
Eighteen adult subjects were included. The use of an EIP of 10% was associated with a higher VDphys, both before pneumoperitoneum: 210 mL (IQR 200–237) vs. 197 mL (IQR 173–217) and 196.8 (IQR 185–218) with EIP 30% and 40%, respectively (P < 0.001 and P = 0.006) and after pneumoperitoneum: 212 mL (IQR 198–228) vs.
202 mL (IQR 181–213), P = 0.001. The application of ARMs and PEEPOL led to a significant reduction in driving pressure [5 cmH₂O (IQR 5–6) vs. 7 cmH₂O (IQR 6–10),
P < 0.001], despite concurrent increases in PEEP [12 cmH₂O (IQR 10–13) vs. 5 cmH₂O,
P < 0.001] and plateau pressure [17 cmH₂O (IQR 16–19) vs. 12 cmH₂O (IQR 12–15)].
Conclusions:
The use of an EIP of 30–40% compared to 10% in patients undergoing robotic surgery optimises lung mechanics and minimises ventilation inefficiencies both before and during the establishment of pneumoperitoneum and Trendelenburg positioning.
REFERENCES (25)
1.
Young CC, Harris EM, Vacchiano C, Bodnar S, Bukowy B, El- liot RRD, et al. Lung-protective ventilation for the surgical patient: international expert panel-based consensus recommendations. Br J Anaesth 2019; 123: 898-913. DOI: 10.1016/j.bja.2019.08.017.
2.
Ferrando C, Soro M, Canet J, Unzueta MC, Suárez F, Librero J, et al. Rationale and study design for an individualized perioperative open lung ventilatory strategy (iPROVE): study protocol for a randomized controlled trial. Trials 2015; 16: 193. DOI: 10.1186/s13063-015-0694-1.
3.
Ferrando C, Suarez-Sipmann F, Tusman G, León I, Romero E, Gracia E, et al. Open lung approach versus standard protective strategies: effects on driving pressure and ventilatory efficiency during anesthesia – a pilot, randomized controlled trial. PLoS One 2017; 12: e0177399. DOI: 10.1371/journal.pone.0177399.
4.
Tusman G, Acosta CM, Ochoa M, Böhm SH, Gogniat E, Martínez-Arca J, et al. Multimodal non-invasive monitoring to apply an open lung approach strategy in morbidly obese patients during bariatric surgery. J Clin Monit Comput 2020; 34: 1015-1024. DOI: 10.1007/s10877-019-00405-w.
5.
Neto AS, Hemmes SNT, Barbas CSV, Beiderlinden M, Fernández-Bustamante A, Futier E, et al. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anesthesia: a meta-analysis of individual patient data. Lancet Respir Med 2016; 4: 272-280. DOI: 10.1016/S2213-2600(16)00057-6.
6.
Ferrando C, Librero J, Tusman G, Serpa-Neto A, Villar J, Belda FJ, et al. Intraoperative open lung condition and postoperative pulmonary complications. a secondary analysis of iPROVE and iPROVE-O2 trials. Acta Anaesthesiol Scand 2022; 66: 30-39. DOI: 10.1111/aas. 13979.
7.
Chiumello D, Carlesso E, Brioni M, Cressoni M. Airway driving pressure and lung stress in ARDS patients. Crit Care 2016; 20: 276. DOI: 10.1186/s13054-016-1446-7.
8.
Gogniat E, Ducrey M, Dianti J, Madorno M, Roux N, Midley A, et al. Dead space analysis at different levels of positive end-expiratory pressure in acute respiratory distress syndrome patients. J Crit Care 2018; 45: 231-238. DOI: 10.1016/j.jcrc.2018.01.005.
9.
Tusman G, Gogniat E, Madorno M, Otero P, Dianti J, Fernández- Ceballos I, et al. Effect of PEEP on dead space in an experimental model of ARDS. Respir Care 2020; 65: 11-20. DOI: 10.4187/respcare.06843.
10.
Tusman G, Groisman I, Fiolo FE, Scandurra A, Martínez-Arca J, Krumrick G, et al. Noninvasive monitoring of lung recruitment maneuvers in morbidly obese patients: The role of pulse oximetry and volumetric capnography. Anesth Analg 2014; 118: 137-144. DOI: 10.1213/01.ane.0000438350.29240.08.
11.
Böhm SH, Maisch S, Von Sandersleben A, Thamm O, Passoni I, Martínez-Arca J, et al. The effects of lung recruitment on the phase III slope of volumetric capnography in morbidly obese patients. Anesth Analg 2009; 109: 151-159. DOI: 10.1213/ane.0b013e31819bcbb5.
12.
Aboab J, Niklason L, Uttman L, Kouatchet A, Brochard L, Jonson B. CO2 elimination at varying inspiratory pause in acute lung injury. Clin Physiol Funct Imaging 2007; 27: 2-6. DOI: 10.1111/j.1475-097X. 2007.00699.x.
13.
Aboab J, Niklason L, Uttman L, Brochard L, Jonson B. Dead space and CO2 elimination related to pattern of inspiratory gas delivery in ARDS patients. Crit Care 2012; 16: R39. DOI: 10.1186/cc11232.
14.
Aguirre-Bermeo H, Morán I, Bottiroli M, Bottiroli M, Italiano S, Parrilla FJ, et al. End-inspiratory pause prolongation in acute respiratory distress syndrome patients: effects on gas exchange and mechanics. Ann Intensive Care 2016; 6: 81. DOI: 10.1186/s13613-016-0183-z.
15.
Aström E, Utmann L, Niklason L, Aboab J, Brochard L, Jonson B. Pattern of inspiratory gas delivery affects CO2 elimination in health and after acute lung injury. Intensive Care Med 2008; 34: 377-384. DOI: 10.1007/s00134-007-0840-7.
16.
Devaquet J, Jonson B, Niklason L, Si Larbi AG, Uttman L, Aboab J, et al. Effects of inspiratory pause on CO2 elimination and arterial PCO2 in acute lung injury. J Appl Physiol 2008; 105: 1944-1949. DOI: 10.1152/japplphysiol.90682.2008.
17.
Sturesson LW, Malmkvist G, Allvin S, Collryd M, Bodelsson M, Jonson B. An appropriate inspiratory flow pattern can enhance CO2 exchange, facilitating protective ventilation of healthy lungs. Br J Anaesth 2016; 117: 243-249. DOI: 10.1093/bja/aew194.
18.
Pillet O, Choukroun ML, Castaing Y. Effects of inspiratory flow rate alterations on gas exchange during mechanical ventilation in normal lungs. Efficiency of end-inspiratory pause. Chest 1993; 103: 1161-1165. DOI: 10.1378/chest.103.4.1161.
19.
Uttman L, Jonson B. A prolonged postinspiratory pause enhances CO2 elimination by reducing airway dead space. Clin Physiol Funct Imaging 2003; 2: 252-256. DOI: 10.1046/j.1475-097x.2003.00498.x.
20.
López-Herrera D, de la Matta M. Influence of the end inspiratory pause on respiratory mechanics and tidal gas distribution of surgical patients ventilated under a tailored open lung approach strategy: a randomised, crossover trial. Anaesth Crit Care Pain Med 2022; 41: 101038. DOI: 10.1016/j.accpm.2022.101038.
21.
Benites MH, Torres D, Poblete F, Labbe F, Bachmann M, Regueira TE, et al. Effects of changes in trunk inclination on ventilatory efficiency in ARDS patients: quasi-experimental study. Intensive Care Med Exp 2023; 11: 65. DOI: 10.1186/s40635-023-00550-2.
22.
Ferrando C, Tusman G, Suarez-Sipmann F, León I, Pozo N, Carbo- nell J, et al. Individualized lung recruitment maneuver guided by pulse-oximetry in anesthetized patients undergoing laparoscopy: a feasibility study. Acta Anaesthesiol Scand 2018; 62: 608-619. DOI: 10.1111/aas.13082.
23.
Portela DA, Di Franco C, Chiavaccini L, Araos J, Romano M, Ote- ro PE, et al. Effect of end-inspiratory pause on airway and physiological dead space in anesthetized horses. Vet Anaesth Analg 2023; 50: 363-371. DOI: 10.1016/j.vaa.2023.03.002.
24.
Zhang T, Lv F, He S, Zhang Y, Ren L, Jin J. Effect of individualized end-inspiratory pause guided by driving pressure on respiratory mechanics during prone spinal surgery: a randomized controlled trial. Front Med 2025; 12: 1537788. DOI: 10.3389/fmed.2025.1537788.
25.
Ferrando C, Romero C, Tusman G, Suárez-Sipmann F, Canet J, Dos- dá R, et al. The accuracy of postoperative, non-invasive Air-Test to diagnose atelectasis in healthy patients after surgery: A prospective, diagnostic pilot study. BMJ Open 2017; 7: e015560. DOI: 10.1136/bmjopen-2016-015560.