CRITICAL CARE - ADULTS / ORIGINAL ARTICLE
 
KEYWORDS
TOPICS
ABSTRACT
Introduction:
Aneurysmal subarachnoid hemorrhage (aSAH), a severe form of hemorrhagic stroke, poses significant diagnostic and management challenges, particularly in predicting and managing cerebral vasospasm and delayed cerebral ischemia. This study explores the predictive value of near-infrared spectroscopy (NIRS) in high-grade aSAH patients.

Material and methods:
This observational study included 16 high-grade aSAH patients treated at a single institution from June 2020 to November 2023. Neuromonitoring incorporated daily transcranial Doppler and continuous NIRS, alongside routine computed tomography perfusion. The primary endpoint was the occurrence of major cerebral vasospasms detected by digital subtraction angiography preceded by a decrease in regional oxygen saturation as indicated by NIRS.

Results:
Among the participants, vasospasms were most prevalent in the internal carotid artery (56.3%), followed by the middle cerebral artery (50%). NIRS detected alterations in 43.8% of the cohort, with 25% occurring before vasospasm onset. A correlation between early NIRS alterations and specific vasospasm locations was identified.

Conclusions:
Conclusions: While NIRS shows potential for continuous, non-invasive monitoring of cerebral oxygenation, its utility in predicting vasospasms is limited. The findings underscore the importance of integrating NIRS with other neuromonitoring modalities to enhance predictive accuracy and patient management in aSAH. Large-scale studies are necessary to establish protocols and intervention thresholds.
REFERENCES (34)
1.
Hoh BL, Ko NU, Amin-Hanjani S, Chou SHY, Cruz-Flores S, Dangayach NS, et al. 2023 Guideline for the management of patients with aneurysmal subarachnoid hemorrhage: a guideline from the American Heart Association/American Stroke Association. Stroke 2023; 54: e314-e370. DOI: 10.1161/STR.0000000000000436.
 
2.
Dodd WS, Laurent D, Dumont AS, Hasan DM, Jabbour PM, Starke RM, et al. Pathophysiology of delayed cerebral ischemia after subarachnoid hemorrhage: a review. J Am Heart Assoc 2021; 10: e021845. DOI: 10.1161/JAHA.121.021845.
 
3.
Zacharia BE, Hickman ZL, Grobelny BT, DeRosa P, Kotchetkov I, Ducruet AF, Connolly ES. Epidemiology of aneurysmal subarachnoid hemorrhage. Neurosurg Clin N Am 2010; 21: 221-233. DOI: 10.1016/j.nec.2009.10.002.
 
4.
Li S, Zhang J, Li N, Wang D, Zhao X. Predictive nomogram models for unfavorable prognosis after aneurysmal subarachnoid hemorrhage: analysis from a prospective, observational cohort in China. CNS Neurosci Ther 2023; 29: 3567-3578. DOI: 10.1111/cns.14288.
 
5.
Ironside N, Buell TJ, Chen CJ, Kumar JS, Paisan GM, Sokolowski JD, et al. High-grade aneurysmal subarachnoid hemorrhage: predictors of functional outcome. World Neurosurg 2019; 125: e723-e728. DOI: 10.1016/j.wneu.2019.01.162.
 
6.
Chen C, Guo X, Chen Y, Zheng K, Zhou J, Wang H, et al. Predictors of poor-grade aneurysmal subarachnoid hemorrhage caused by anterior communicating artery aneurysm. World Neurosurg 2021; 148: e340-e345. DOI: 10.1016/j.wneu.2020.12.140.
 
7.
Osgood ML. Aneurysmal subarachnoid hemorrhage: review of the pathophysiology and management strategies. Curr Neurol Neurosci Rep 2021; 21: 50. DOI: 10.1007/s11910-021-01136-9.
 
8.
Howard BM, Hu R, Barrow JW, Barrow DL. Comprehensive review of imaging of intracranial aneurysms and angiographically negative subarachnoid hemorrhage. Neurosurgical Focus 2019; 47: E20. DOI: 10.3171/2019.9.FOCUS19653.
 
9.
Francoeur CL, Lauzier F, Brassard P, Turgeon AF. Near infrared spectroscopy for poor grade aneurysmal subarachnoid hemorrhage – a concise review. Front Neurol 2022; 13: 874393. DOI: 10.3389/fneur. 2022.874393.
 
10.
Park JJ, Kim Y, Chai CL, Jeon JP. Application of near-infrared spectroscopy for the detection of delayed cerebral ischemia in poor-grade subarachnoid hemorrhage. Neurocrit Care 2021; 35: 767-774. DOI: 10.1007/s12028-021-01223-2.
 
11.
Park JJ, Kim C, Jeon JP. Monitoring of delayed cerebral ischemia in patients with subarachnoid hemorrhage via near-infrared spectroscopy. J Clin Med 2020; 9: 1595. DOI: 10.3390/jcm9051595.
 
12.
Oshiro EM, Walter KA, Piantadosi S, Witham TF, Tamargo RJ. A new subarachnoid hemorrhage grading system based on the Glasgow Coma Scale: a comparison with the Hunt and Hess and World Fede­ration of Neurological Surgeons Scales in a clinical series. Neurosurgery 1997; 41: 140-148. DOI: 10.1097/00006123-199707000-00029.
 
13.
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021; 372: n71. DOI: 10.1136/bmj.n71.
 
14.
Sawilowsky SS. New effect size rules of thumb. J Mod App Stat Meth 2009; 8: 597-599.
 
15.
Budohoski KP, Czosnyka M, Smielewski P, Kasprowicz M, Helmy A, Bulters D, et al. Impairment of cerebral autoregulation predicts delayed cerebral ischemia after subarachnoid hemorrhage: a prospective observational study. Stroke 2012; 43: 3230-3237. DOI: 10.1161/STROKEAHA.112.669788.
 
16.
Zweifel C, Castellani G, Czosnyka M, Carrera E, Brady KM, Kirkpatrick PJ, et al. Continuous assessment of cerebral autoregulation with near-infrared spectroscopy in adults after subarachnoid hemorrhage. Stroke 2010; 41: 1963-1968. DOI: 10.1161/STROKEAHA.109.577320.
 
17.
Yousef KM, Balzer JR, Crago EA, Poloyac SM, Sherwood PR. Trans­cranial regional cerebral oxygen desaturation predicts delayed cerebral ischaemia and poor outcomes after subarachnoid haemorrhage: a correlational study. Intensive Crit Care Nurs 2014; 30: 346-352. DOI: 10.1016/j.iccn.2014.05.001.
 
18.
Budohoski KP, Czosnyka M, Smielewski P, Varsos GV, Kaspro­wicz M, Brady KM, et al. Monitoring cerebral autoregulation after subarachnoid hemorrhage. Acta Neurochir Suppl 2016; 122: 199-203. DOI: 10.1007/978-3-319-22533-3_40.
 
19.
Budohoski KP, Czosnyka M, Smielewski P, Varsos GV, Kasprowicz M, Brady KM, et al. Cerebral autoregulation after subarachnoid hemorrhage: comparison of three methods. J Cereb Blood Flow Metab 2013; 33: 449-456. DOI: 10.1038/jcbfm.2012.189.
 
20.
Van Der Harst JJ, Elting JWJ, Bokkers RPH, Veeger NJGM, Van Donkelaar CE, Van Den Bergh WM, et al. The diagnostic value of near-infrared spectroscopy to predict delayed cerebral ischemia and unfavorable outcome after subarachnoid hemorrhage. World Neurosurg 2023; 178: e202-212. DOI: 10.1016/j.wneu.2023.07.033.
 
21.
Keyrouz SG, Diringer MN. Clinical review: prevention and therapy of vasospasm in subarachnoid hemorrhage. Crit Care 2007; 11: 220. DOI: 10.1186/cc5958.
 
22.
Liu G, Guo Z, Sun X, Chai W, Qi L, Li H, et al. Monitoring of the effect of cerebral autoregulation on delayed cerebral ischemia in patients with aneurysmal subarachnoid hemorrhage. World Neurosurg 2018; 118: e269-e275. DOI: 10.1016/j.wneu.2018.06.170.
 
23.
Keller E, Froehlich J, Baumann D, Böcklin C, Sikorski C, Oberle M, Muser M. Detection of delayed cerebral ischemia (DCI) in subarachnoid haemorrhage applying near-infrared spectroscopy: elimination of the extracerebral signal by transcutaneous and intraparenchymatous measurements in parallel. Acta Neurochir Suppl 2015; 120: 243-247. DOI: 10.1007/978-3-319-04981-6_41.
 
24.
Tanaka Y, Ebihara A, Ikota M, Yamaguro T, Kamochi H, Kusaka G, et al. Early diagnosis of cerebral ischemia in cerebral vasospasm by oxygen-pulse near-infrared optical topography. Acta Neurochir Suppl 2015; 120: 269-274. DOI: 10.1007/978-3-319-04981-6_45.
 
25.
Kieninger M, Meichelböck K, Bele S, Bründl E, Graf B, Schmidt NO, Schebesch KM. Brain multimodality monitoring in patients suffering from acute aneurysmal subarachnoid hemorrhage: clinical value and complications. J Integr Neurosci 2021; 20: 703-710. DOI: 10.31083/ j.jin2003075.
 
26.
Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol 2009; 8: 355-369. DOI: 10.1016/S1474-4422(09)70025-0.
 
27.
Etminan N, Chang HS, Hackenberg K, De Rooij NK, Vergouwen MDI, Rinkel GJE, Algra A. Worldwide incidence of aneurysmal subarachnoid hemorrhage according to region, time period, blood pressure, and smoking prevalence in the population: a systematic review and meta-analysis. JAMA Neurol 2019; 76: 588-597. DOI: 10.1001/jamaneurol.2019.0006.
 
28.
Al-Khindi T, Macdonald RL, Schweizer TA. Cognitive and functional outcome after aneurysmal subarachnoid hemorrhage. Stroke 2010; 41: e519-e536. DOI: 10.1161/STROKEAHA.110.581975.
 
29.
Girotra T, Lekoubou A, Bishu KG, Ovbiagele B. A contemporary and comprehensive analysis of the costs of stroke in the United States. J Neurol Sci 2020; 410: 116643. DOI: 10.1016/j.jns.2019.116643.
 
30.
Macdonald RL. Delayed neurological deterioration after subarachnoid haemorrhage. Nat Rev Neurol 2014; 10: 44-58. DOI: 10.1038/nrneurol.2013.246.
 
31.
Abdulazim A, Heilig M, Rinkel G, Etminan N. Diagnosis of delayed cerebral ischemia in patients with aneurysmal subarachnoid hemorrhage and triggers for intervention. Neurocrit Care 2023; 39: 311-319. DOI: 10.1007/s12028-023-01812-3.
 
32.
Maillard J, Sologashvili T, Diaper J, Licker MJ, Keli Barcelos G. A case of persistence of normal tissue oxygenation monitored by near- infrared spectroscopy (NIRS) values despite prolonged perioperative cardiac arrest. Am J Case Rep 2019; 20: 21-25. DOI: 10.12659/AJCR.911399.
 
33.
Bouzat P, Payen JF, Crippa IA, Taccone FS. Noninvasive vascular methods for detection of delayed cerebral ischemia after subarachnoid hemorrhage. J Clin Neurophysiol 2016; 33: 260-267. DOI: 10.1097/ WNP.0000000000000271.
 
34.
Yang M, Yang Z, Yuan T, Feng W, Wang P. A systemic review of functional near-infrared spectroscopy for stroke: current application and future directions. Front Neurol 2019; 10: 58. DOI: 10.3389/fneur.2019.00058.
 
eISSN:1731-2531
ISSN:1642-5758
Journals System - logo
Scroll to top