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SPECIAL ARTICLE

Assessing pain is central to safe anaesthesia and 
intensive care, yet it is often most difficult when 
patients are sedated, intubated, or nonverbal [1, 2]. 
In the absence of self-report, clinicians rely on 
observable behaviour and physiological signals, 
both of which can miss pain or prompt overtreat-
ment [3]. To address this, newer approaches esti-
mate nociception rather than pain per se – ranging 
from structured behavioural scales to autonomic 
and brain-signal measures, with emerging options 
such as computer-vision facial analysis, contact-
free sensors, and wearables. These tools can inform 
decisions, but none is definitive, and all remain 
vulnerable to confounders (e.g., haemodynamic  
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instability, β-blockade, vasopressors, deep seda-
tion, neuromuscular blockade); interpretation 
belongs in clinical context and should feed a pre-
defined action-reassessment plan. A pragmatic mul-
timodal strategy includes anchoring assessment in 
validated behavioural scales when feasible, adding  
an objective index when not, and reassessing 
against agreed thresholds, in line with PADIS prin-
ciples: Clinical Practice Guidelines for the Preven-
tion and Management of Pain, Agitation/Sedation, 
Delirium, Immobility, and Sleep Disruption in Adult 
Patients in the ICU [4].

This is especially important in paediatric pa-
tients. In infants and young children, pain assess-
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Abstract
Assessing pain in non-communicative patients remains challenging in anaesthesia and 
intensive care. When self-report is unavailable, clinicians infer nociception from behaviour 
and physiology. Behavioural scales such as the Behavioral Pain Scale and the Critical-
Care Pain Observation Tool are simple and reproducible, supporting consistent practice; 
however, performance declines with deep sedation, neuromuscular blockade, or severe 
neurological injury. Where behavioural cues are absent or unreliable, physiological and 
neurophysiological signals provide partial information. Autonomic indicators, including 
heart rate variability, the Surgical Pleth Index, pupillometry, and skin conductance, cap-
ture sympathetic responses to noxious stimuli rather than perceived pain and are sensi-
tive to drugs, haemodynamic instability, shivering, and agitation. Electroencephalogra-
phy and functional near-infrared spectroscopy identify cortical responses to nociceptive 
input, yet clinically useful thresholds remain context dependent, and most applications 
are research-based. Emerging machine-learning systems that integrate behaviour and 
physiology show promise, but models validated in the operating room are not auto-
matically applicable in the intensive care unit and require new external validation with 
potential recalibration. Evidence is generally stronger intraoperatively than in intensive 
care, and paediatric data are limited. No instrument directly measures subjective pain 
when self-report is absent. Available tools index nociception through behavioural and 
physiological correlates and must be interpreted within the clinical context.
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logical, artificial intelligence, machine learning, critical care, intensive care units, 
electroencephalography.
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ment is even more challenging. Their behavioural 
responses are often non-specific, and their physio
logical regulation is still developing. Some objective 
monitors have been adapted for use in children – 
but the data are more limited, and normal ranges 
vary by age. In neonates, pain responses may be 
blunted or unclear, and no single tool has been 
shown to work well in all situations. This makes 
a combined approach essential when caring for 
this group.

The purpose of this review is to summarize the 
current methods available for objective assessment 
of acute pain in anaesthesia and intensive care, with 
a focus on both adult and paediatric populations. 
We review recent literature, including clinical stu
dies, reviews, and professional guidelines. The arti-
cle covers four main categories of tools: behavioural 
scales, vital signs and autonomic system measure, 
neurophysiology and multimodal indices, and  
AI-based tools. For each group, we describe how 
the method works, its clinical uses, limitations, and 
the quality of supporting evidence.

In this review, pain refers to the conscious and 
subjective experience that requires awareness and 
can be communicated by the patient. By contrast, 
nociception describes the neural activity respon-
sible for detecting and transmitting potentially 
harmful stimuli. Objective monitoring techniques, 

whether based on autonomic responses or (neuro)
physiological signals, indicate nociceptive or stress-
related activity rather than pain itself. Consequently, 
unless studies involve awake subjects who can re-
port their sensations, the parameters are discussed 
here should be formally considered as measures 
of nociception.

To provide an overview of the available research, 
we summarised the current evidence in a narrative 
level-of-evidence (LoE) table (Table 1). The grading 
reflects the amount, design, and consistency of pub-
lished studies and indicates the relative robustness 
of data supporting each monitoring modality. This 
approach follows the general logic of evidence  
hierarchies but does not rely on a formal system 
such as OCEBM (Oxford Centre for Evidence-Based 
Medicine) or GRADE (Grading of Recommendations 
Assessment, Development and Evaluation).

BEHAVIOURAL METHODS OF PAIN ASSESSMENT
Accurate pain assessment in anaesthetised and 

critically ill patients unable to self-report remains 
a major challenge. Traditional self-report tools are not 
very feasible, and physiological indicators may reflect 
symptoms of sympathetic reaction or critical illness 
rather than pain [2]. Due to this, behavioural tools 
based on observable responses (e.g., facial expres-
sion, body movements, muscle tension, ventilator 

TABLE 1. Level of evidence (LoE). Narrative appraisal of current evidence 

Method LoE (OR) LoE (ICU) Evidence highlights Key caveats
Behavioural scales 
(BPS, CPOT)

– Moderate Validated against procedures;  
good inter-rater reliability [1, 2, 6–9]

Mostly single-centre cohorts; limited outcome 
data despite guideline endorsement [4, 21]

Vital signs (HR, BP, RR) Low Low Universally available markers  
of general stress response [3]

Non-specific for pain;  
heterogeneous observational evidence [3, 22]

Pupillometry/PPI Moderate Low OR/ICU cohorts and RCTs show sensitivity to 
nociception; useful with deep sedation or NMB 

[12, 18, 23–27, 29]

Small samples;  
lighting/eye-access and drug confounding;  

ICU evidence limited [12, 28, 29]

Skin conductance 
(EDA)

Low Low Continuous signal; responsive to noxious 
stimulation in OR/ICU cohorts [13, 14]

Poor specificity; artefacts from anxiety/fever/
sweating; sparse ICU validation [13, 14, 29]

HRV/ANI Moderate Low Multiple trials/reviews support intra-op 
titration value [11, 16, 31–34]

Requires sinus rhythm; sepsis/ventilation/
vasoactives confound ICU baselines [11, 35]

Surgical Pleth Index 
(SPI)

Moderate Low Predicts early postop pain; meta-analyses  
and RCTs show intra-op signal  

[20, 30, 36, 40–45]

No consistent opioid reduction across  
meta-analyses; PPG quality/positioning effects 

[15, 17, 36]

Nociception Level 
Index (NOL)

Moderate Investigational Intra-op validation and RCTs;  
meta-analysis shows statistical improvements 

[46–55]

Clinical benefit uncertain; specialised probe; 
limited ICU data and early pilots/protocols 

[35, 52–54]

EEG/fNIRS 
(neurophysiology)

Low Low Mechanistic links between cortical signals  
and pain/nociception [58–61, 76–79]

Small/experimental studies; no standard 
cut-offs; susceptibility to EMG/artefacts and 

clinical confounders [60, 62, 67]

AI-based behavioural 
tool

Low Investigational Emerging multimodal systems;  
early feasibility in clinical settings [81–86]

Bias and generalisation risks;  
privacy/ethics considerations;  

limited external validation [81, 87–89]
LoE used in this review (narrative appraisal): high – consistent multicentre RCTs with patient-centred outcomes, moderate – multiple trials/meta-analyses show reliable discrimination, outcome benefits unclear/
inconsistent, low – small/heterogeneous studies with inconsistent effects, investigational – early feasibility or very limited data (no established clinical role).
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compliance) have become essential components 
of pain management protocols in intensive care 
units (ICUs) and can also provide useful information 
about an anaesthetised patient [2].

Among the most extensively validated in adult 
population tools are the Behavioral Pain Scale (BPS) 
and the Critical-Care Pain Observation Tool (CPOT). 
Using these tools helps standardize pain monitoring 
and has been linked to improved clinical outcomes, 
including reduced duration of mechanical ventila-
tion and ICU stay [5].

Behavioral Pain Scale 
The BPS (Table 2) was first introduced in 2001 

by Payen et al. [6] as an instrument for assessing 
pain in mechanically ventilated patients receiving 
analgesia and sedation. Since then, the BPS has 
been validated across multiple ICU settings and 
studies, and it is now recognized as one of the most 
widely used tools for pain assessment in critically 
ill patients [7, 8]. The BPS comprises three key com-
ponents: facial expression, movement of the upper 
limbs, and either compliance with mechanical ven-
tilation or vocalization in non-intubated patients. 
The scale ranges from 3 (no pain) to 12 points 
(maximum pain), with scores corresponding to 
pain intensity. A score of ≥ 6 is generally consid-
ered indicative of moderate to severe pain, war-
ranting therapeutic intervention. Research demon-
strates that the BPS is psychometrically sound and 

achieves moderate to high agreement between 
independent observers [2]. 

Critical-Care Pain Observation Tool 
The CPOT (Table 3) was first developed and vali-

dated in 2006 by Gélinas et al. [1] as an instrument 
for assessing pain in critically ill adults. The tool 
evaluates four behavioural domains: facial expres-

TABLE 2. Behavioral Pain Scale (BPS)

Component Description Score
Facial expression Relaxed 1

Partially tightened (e.g., brow lowering) 2

Fully tightened (e.g., eyelid closing) 3

Grimacing 4

Upper limbs No movement 1

Partially bent 2

Fully bent with finger flexion 3

Permanently retracted 4

Compliance  
with ventilation

Tolerating movement 1

Coughing but tolerating movement 2

Fighting ventilator 3

Unable to control ventilation 4
Total score range: 3–12. Interpretation: 3 points – no pain, 4–6 points – mild pain, 7–9 points – moderate pain, 
10–12 points – severe pain.
Clinical takeaway: Standard for mechanically ventilated ICU patients – threshold ≥ 6 indicates significant pain.
Payen JF, Bru O, Bosson JL, Lagrasta A, Novel E, Deschaux I, et al. Assessing pain in critically ill sedated patients by using 
a behavioral pain scale. Crit Care Med 2001; 29: 2258-2263 [6].

TABLE 3. The Critical-Care Pain Observation Tool (CPOT)

Component Description Score
Facial expressions Relaxed, neutral (no muscle tension observed) 0

Tense (frowning, brow lowering, orbit tightening, levator contraction,  
or other changes such as tearing during nociceptive procedures)

1

Grimacing (eyelids tightly closed, mouth open or biting ET tube) 2

Body movements Absence of movements or normal position (not aimed at pain site, not protective) 0

Protective movements (slow, cautious, touching or rubbing pain site, seeking attention) 1

Restlessness/agitation (pulling tubes, thrashing, striking at staff,  
attempting to sit up or climb out of bed)

2

Muscle tension Relaxed (no resistance to passive movements) 0

Tense/rigid (resistance to passive flexion/extension of upper limbs, or when being turned) 1

Very tense/rigid (strong resistance, impossible to complete passive movement) 2

Compliance  
with ventilator
(intubated patients)

Tolerating ventilator or movement (no alarms) 0

Coughing but tolerating ventilation (alarms may be activated but stop spontaneously) 1

Fighting ventilator (asynchrony, frequent alarms) 2

Vocalization 
(extubated patients)

Talking in normal tone or no sound 0

Sighing, moaning 1

Crying out, sobbing 2
Total score range: 0–8. Interpretation: 0–2 points – no pain or minimal discomfort, ≥ 3 points – indicates the presence of pain, 6–8 points – suggests severe pain or distress and requires prompt 
analgesic intervention and reassessment after treatment.
Clinical takeaway: preferred when distinguishing pain from non-pain-related agitation; threshold ≥ 3 indicates pain.
Gélinas C, Fillion L, Puntillo KA, Viens C, Fortier M. Validation of the critical-care pain observation tool in adult patients. Am J Crit Care 2006; 15: 420-427 [1].
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sion, body movements, muscle tension, and either 
compliance with the ventilator or vocalization in 
non-intubated patients. It has demonstrated strong 
reliability and validity in differentiating painful from 
non-painful procedures. Each feature is scored be-
tween 0 and 2 points, and the total score ranges 
from 0 (no pain) to 8 (maximum pain). 

Since its introduction, the CPOT has been ex-
tensively validated across diverse intensive care set-
tings worldwide, and it is currently recommended 
as one of the standard behavioural scales for non-
communicative ICU patients [9].

Behavioural pain assessment tools are often 
compared in clinical settings to evaluate their reli-
ability and diagnostic accuracy in non-communica-
tive ICU patients. Rijkenberg et al. [9] and Thomas 
et al. [10] compared the BPS and CPOT. Both scales 
demonstrated good inter-rater reliability and in-
creased scores during a painful procedure (turning), 
confirming their sensitivity to nociceptive stimuli. 
These findings suggest that both scales can be ap-
plied with confidence in daily ICU practice. 

Quality of evidence and limitations
The main limitations of these measures include 

observer subjectivity, reduced reliability in cases 
of deep sedation, neuromuscular blockade, or neu-
rological injury, as well as their inability to capture 
the multidimensional nature of pain. They may also 
confuse pain with agitation or non-nociceptive re-
sponses. For this reason, behavioural scales should 
be complemented by clinical judgment and physio
logical indicators. 

Although BPS and CPOT are the most validated 
behavioural tools in those settings, most support-
ing studies are small, single-centre observational 
cohorts with moderate risk of bias. Multicentre 
randomized trials demonstrating improvements in 
hard outcomes such as mortality or long-term mor-
bidity are lacking. Reliability decreases in deeply 
sedated, paralyzed, or neurologically impaired pa-
tients. Overall, the level of evidence is moderate, 
and these tools should be interpreted in the context 
of broader clinical judgment [9, 10].

AUTONOMIC AND PHYSIOLOGICAL METHODS 
OF ACUTE PAIN ASSESSMENT

Painful stimulation shifts autonomic tone to-
ward sympathetic activation with vagal withdrawal, 
creating a characteristic pattern in which heart rate 
(HR) rises and high-frequency heart rate variabil-
ity (HRV) falls [11, 12]. Peripheral vasoconstriction 
lowers pulse-oximetry waveform amplitude, pupils 
dilate, and palmar sweating increases [13–16]. Be-
cause these changes are measurable at the bedside, 
nociceptive stress can be tracked through several 

autonomic approaches: electrocardiography (ECG)-
derived HRV/ANI [12, 17], pulse-oximetry – based 
SPI [18], electrodermal activity [16], reflex pupil-
lometry [13, 19], and multiparametric indices such 
as NOL [20, 21]. Most tools here read autonomic 
activity rather than pain, so their drawbacks repeat 
across methods. Signals are nonspecific and rise 
with anxiety, fever or general stress, and they shift 
with drugs that change autonomic tone, including 
beta blockers, anticholinergics, opioids and vasoac-
tive medication [12, 22]. In the ICU, sepsis and venti-
lation can depress HRV, deep sedation or neuromus-
cular block alters reactivity, and practical constraints 
add noise: light and eye access limit pupillometry, 
skin moisture and anticholinergics alter electroder-
mal activity, PPG quality and positioning affect SPI, 
and NOL needs a dedicated probe and remains in-
vestigational [12–15, 18–20].

Physiological parameters – heart rate,  
blood pressure, respiratory rate

Acute nociception triggers a stereotyped stress 
response via sympathetic–adrenomedullary and 
hypothalamic–pituitary–adrenal activation, typically 
manifesting as tachycardia, hypertension, tachy-
pnoea, pupillary dilatation, sweat gland activity (dia-
phoresis), and a rise in circulating cortisol. Because 
HR, blood pressure (BP), and respiratory rate (RR) are 
continuously monitored in the operating room (OR), 
ICU, and post-anaesthesia care unit (PACU), clinicians 
have long used changes in these variables as read-
ily available, though non-specific, signals of pain or 
distress [3, 23].

HR and BP can be influenced by numerous fac-
tors other than pain, such as fever, hypovolaemia, 
hypoxia, anxiety, medications or emotional/psycho-
logical stimuli. Studies in emergency department 
patients have shown no clear linear correlation 
between self-reported pain scores and HR [13], and 
BP fluctuations can similarly occur for reasons unre-
lated to nociception. Respiratory rate may increase 
with pain but is also affected by sedation, ventilator 
settings, or metabolic factors. Consequently, relying 
on a single vital sign to assess pain often leads to 
false positives or negatives.

In ICU patients, interventions such as beta-
blockers, neuromuscular blocking agents, or deep 
sedation can blunt or mask typical physiological 
responses to pain. As a result, normal vital signs do 
not rule out pain, and abnormal signs do not al-
ways indicate it. Clinical guidelines stress that vital 
signs alone are insufficient for pain assessment but 
can serve as cues for further evaluation [14]. While 
universally available, vital signs lack specificity for 
pain monitoring and are now considered adjunc-
tive indicators – helpful for identifying general 
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stress responses but too confounded by other fac-
tors to guide analgesia reliably on their own.

Quality of evidence and limitations
The evidence supporting vital signs as pain indi-

cators is weak. Most studies are observational with 
heterogeneous methods, and common confound-
ers (fever, anxiety, hypovolaemia, hypoxia and vaso-
active agents) undermine reliability. Consequently, 
the overall certainty of evidence is low; used in iso-
lation, vital signs show poor discriminant validity for 
pain and should serve only as cues to trigger assess-
ment with validated instruments [3, 24].

Pupillometry (pupillary dilation reflex)
The pupillary dilation reflex is an autonomic re-

sponse directly linked to nociceptive stimulation, 
where noxious stimuli increase sympathetic activ-
ity and inhibit parasympathetic tone, causing pupil 
dilation – even in unconscious patients. Infrared pu-
pillometry quantifies this reflex by measuring pupil 
size and its response to a controlled stimulus. Un-
like behavioural pain scores, this reflex remains in-
tact under neuromuscular blockade, making it par-
ticularly valuable for deeply sedated or paralyzed 
patients. Pupillometry allows for monitoring of an 
autonomic reflex closely coupled to nociception, of-
fering greater specificity than global vital signs [25].

Modern portable pupillometers deliver precise, 
objective measurements and, when paired with 
a controlled noxious stimulus (e.g., tetanic electrical 
stimulation), allow clinicians to estimate analgesia 
levels using the Pupillary Pain Index (PPI). The PPI, 
scored from 1 to 9 (or 0 to 10), reflects the pupil-
lary dilation response: low scores indicate adequate 
analgesia, while high scores suggest insufficient  
analgesia [26] and have been shown to correlate with 
nociception and predict reactivity in children [27]. 
In the OR, pupillometry helps anaesthesiologists 
titrate opioids by detecting inadequate analgesic 
depth during surgical stimuli, reducing opioid con-
sumption and preventing unwanted pain respons-
es [28]. In ICU settings, pupillometry is useful for 
assessing pain in sedated or unconscious patients, 
with studies showing correlations between pupil-
lary dilation and behavioural pain scores during 
routine procedures [19]. It can also predict inade
quate analgesia during interventions such as en-
dotracheal suctioning, allowing proactive adjust-
ments to analgesic infusions [29].

Despite its advantages, pupillometry has limi-
tations. It is episodic rather than continuous, and 
requires shielding from ambient light as well as 
unobstructed eye access, which may be impractical 
with ocular or cranio-facial pathology (e.g., injury, 
oedema, cataract). Pupillometry is highly sensitive 

to nociception but drug effects can confound it and 
performance varies between patients and proce-
dures, so findings should be interpreted in the clini-
cal context. It is most effective in intraoperative set-
tings and for ICU patients under deep sedation or 
neuromuscular blockade, where conventional pain 
scales are not applicable.

Quality of evidence and limitations
Pupillometry has been evaluated in several small 

randomized trials and observational studies, mostly 
in OR or ICU settings. While results are promising, 
evidence remains limited to single-centre cohorts, 
often with < 100 participants, and susceptible to 
drug and lighting confounders. No large multicentre 
randomized controlled trials (RCTs) have confirmed 
its routine clinical value. The current evidence level 
is low-to-moderate [13].

Skin conductance (electrodermal activity 
responses)

As noted above, sympathetic activation increas-
es sweat eccrine gland activity; skin-conductance 
monitors leverage this by measuring cutaneous 
electrical conductance, which rises with sweat se-
cretion. Often termed galvanic skin response or 
electrodermal activity (EDA) monitoring, this tech-
nique involves placing electrodes on the palmar 
surfaces of the hand or sole of the foot to detect 
minute fluctuations in skin conductance and thus 
perspiration. Skin conductance rises within seconds 
of a noxious stimulus and is most reliable for track-
ing changes within the same patient; baseline val-
ues vary widely, so between-patient comparisons 
are less meaningful [14]. Skin conductance reflects 
eccrine activation via sympathetic cholinergic fibres 
– as opposed to adrenergic fibres, which regulate, 
inter alia, HR and contractility, vascular tone, and 
pupillary dilatation. This response occurs rapidly 
and is independent of haemodynamic changes. 
Research by Storm et al. [14] indicated that the skin 
conductance algesimeter responds to noxious stim-
uli with a high sensitivity (around 90%) and can de-
tect nociception-related autonomic reactions better 
than HR or blood pressure. During general anaes-
thesia, increases in skin conductance correlate with 
surgical stress and are attenuated by analgesics. Be-
cause sweat gland activity is not affected by neuro-
muscular blockade or most anaesthetic agents, this 
technique can work even in fully paralyzed patients 
[30]. It also provides continuous, real-time output 
– potentially allowing clinicians to see a ‘spike’ on 
a monitor shortly after a patient experiences a no-
ciceptive event.

Skin conductance monitoring has been explored 
in various clinical contexts. For example, Günther  
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et al. [15] monitored ICU patients with the Med-
Storm device and observed that skin conductance 
fluctuations increased during routine nursing proce-
dures and apparent discomfort. However, they also 
found significant limitations in specificity: patients 
who were agitated or anxious (even if not in pain) 
also showed elevated conductance activity, and 
deeply sedated patients had generally low conduc-
tance regardless of moderate pain. The overlap be-
tween pain-induced and agitation-induced signals 
was considerable. This study concluded that while 
skin conductance might reflect a general ‘stress’ 
level, it was unsuitable for detecting pain alone in 
the ICU context because of confounding factors [22].

Electrodermal activity reflects sympathetic 
arousal rather than pain. Additionally, agitation 
and fever can produce false positives. Analogically, 
changes in sedation levels or emergence from 
anaesthesia can also trigger responses unrelated 
to pain. States that impair eccrine function (such 
as skin dryness, peripheral neuropathy, influence 
of anticholinergic drugs) may yield spuriously low 
readings [15, 22]. While the monitor provides con-
tinuous data, it can be difficult to interpret, as cli-
nicians must separate meaningful increases from 
random fluctuations or background noise. There is 
no clear standard for how many fluctuations indi-
cate pain, so the results must always be considered 
in context. These challenges have limited the use 
of skin conductance monitoring for pain assessment 
in adult critical care.

Quality of evidence and limitations
Most studies on electrodermal activity are pi-

lot or feasibility projects with small sample sizes. 
Although sensitivity to nociceptive stimuli is high, 
specificity is poor, with frequent false positives re-
lated to agitation, stress, or fever. No randomized 
trials or large multicentre validations are available. 
The overall quality of evidence is low, and clinical 
applicability in adult ICU remains very limited. 

Heart rate variability and Analgesia 
Nociception Index 

HRV refers to the natural beat-to-beat fluctua-
tions in HR caused by dynamic autonomic nervous 
system balance. In a healthy resting state, the vagus 
nerve influences variability of the HR, particularly 
linked to the respiratory cycle. Acute pain or noci-
ceptive stress tends to decrease parasympathetic 
(vagal) activity and increase sympathetic activity, 
which leads to a reduction in high-frequency HRV 
and a relative increase in low-frequency compo-
nents. Based on this physiology, monitoring HRV 
can provide insight into the patient’s nociception 
level-diminished HRV (specifically, reduced high-

frequency variability) is associated with pain and 
stress, whereas higher HRV indicates a more relaxed, 
comfortable state [12, 31].

The Analgesia Nociception Index (ANI) is a metric 
derived from HRV analysis. ANI monitors use the ECG 
signal to calculate the proportion of high-frequency 
variability in the last 56–176-second window (de-
pending on used index and version of the device), 
internally normalized within the analysis window, 
and scale it into an index from 0 to 100 that is contin-
uously updated. An ANI of 100 would correspond to 
maximal parasympathetic tone (suggesting no noci-
ceptive stress), whereas an ANI of 0 would mean no 
high-frequency variability (indicating extreme noci-
ception or pain stress). In practice, during balanced 
general anaesthesia, ANI values typically range be-
tween ~50 and 70; drops below a certain threshold 
(e.g. ANI < 50) might signal inadequate analgesia, 
prompting intervention. It is important to remember 
that the reliability of HRV-based monitors depends 
on a normal sinus heart rhythm and relatively stable 
physiology. Cardiac arrhythmias such as atrial fibril-
lation, frequent ectopic beats, or paced rhythms in-
validate the ANI calculation, because the algorithm 
assumes variability is due to autonomic modulation, 
not random rhythm disturbance. 

ANI has been extensively studied in the OR set-
ting. Data show that a declining ANI often precedes 
or accompanies signs of autonomic response to 
a surgical stimulus and can lead to lower opioid 
consumption [32]. Additionally, a recent trial of 
automated (closed-loop, ANI-guided) remifentanil 
delivery during burn surgery showed promising 
results (lower intraoperative remifentanil use and 
improved haemodynamic stability) without sacrific-
ing postoperative analgesia [33]. Systematic reviews 
and meta-analyses indicate that ANI is moderately 
effective in reflecting intraoperative nociception, al-
though results have been mixed [34]. A meta-analysis 
assessing periprocedural applicability of the ANI 
analogue for neonates (NIPE, Newborn Infant Para-
sympathetic Evaluation) revealed heterogeneous 
outcomes and study designs, indicating that further 
studies are required to confirm its efficacy [35]. 

HRV-based nociception monitoring in awake or 
lightly sedated ICU patients is less validated. Critical 
illness or inflammation can by itself reduce HRV (of-
ten seen in sepsis or MODS), so critically ill patients 
might have low ANI values at baseline not strictly 
related to pain [36]. 

Currently, evidence suggests that while ANI and 
similar indices can improve the titration of opioids in 
the OR, it should be treated as a tool to refine clini-
cal judgment. In the ICU, HRV-based monitoring re-
mains mostly investigational, except perhaps in spe-
cific scenarios such as during procedural sedation.



e371

Monitoring acute pain in the OR and ICU

Quality of evidence and limitations
Several RCTs and meta-analyses have assessed 

ANI in perioperative settings, but the results are 
inconsistent – some show reduced intraoperative  
opioid use, while others fail to demonstrate diffe
rences in postoperative pain outcomes. ICU studies 
are mostly pilot cohorts with major confounding from 
sepsis, arrhythmias, and vasoactive drugs. Overall, 
the evidence behind ANI remains moderate in anaes
thesia and low in intensive care [34].

Surgical Pleth Index 
The Surgical Pleth Index (SPI) is an objective index 

derived from the pulse oximetry curve – photople-
thysmogram – that quantifies the balance between 
nociception and analgesia during general anaesthe-
sia. The SPI is calculated from two key components 
of the pulse wave: the heartbeat interval (HBI, reflect-
ing the interpulse interval) and the pulse photople-
thysmography amplitude (PPGA). SPI is computed as 
100 minus a weighted combination of HBI and PPGA, 
with greater weight given to changes in PPGA. No-
ciceptive stimulation triggers sympathetic nervous 
system responses – namely, tachycardia (shortened 
HBI) and peripheral vasoconstriction (reduced PPGA) 
– which cause the SPI value to rise. Thus, higher SPI 
values correspond to an increased sympathetic re-
sponse to pain, whereas lower values reflect ade-
quate analgesia or deep anaesthesia. Monitoring SPI 
requires only a standard pulse oximeter sensor, mak-
ing it non‑invasive and easily integrated into routine 
intraoperative monitoring. The numeric SPI (0–100) 
allows intuitive interpretation: in adults under gen-
eral anaesthesia, 20–50 is typically optimal; persistent  
values above this range may signal an inadequate 
opioid effect, and values below it may indicate ex-
cessive autonomic suppression.

Pooled RCTs/meta-analyses show no overall re-
duction in intraoperative opioid use with SPI guid-
ance. They do show modest benefits (fewer tachycar-
dia events, lower propofol use, faster eye opening), 
but effects on extubation time, postoperative pain 
scores, postoperative nausea and vomiting, and 
postoperative opioid use remain mixed [16, 18]. Ad-
ditionally, SPI values measured before emergence 
have been linked with early postoperative pain  
levels and analgesic needs, suggesting a predictive 
role [31]. 

SPI reads sympathetic activation and is not pain 
specific. Interpretation should account for photople-
thysmography signal quality and patient position-
ing [37].

Apart from SPI, the plethysmographic perfusion 
index (PI) (also known as the peripheral perfusion 
index – PPI) has been examined as a marker of no-
ciceptive response. Recent work illustrates ongoing 

but uneven interest in this approach, e.g. a recent 
intraoperative study showed PI to fall with surgi-
cal stimulation and rise after opioid administration 
[38]. Smaller postoperative cohorts, including an 
earlier study by Chu et al. [39], reported PI increases 
after pain relief and modest correlations with anal-
gesic requirement [40]. These examples reflect con-
tinued interest in PI as a nociception marker, but 
current evidence is inconsistent and lacks formal 
validation.

Quality of evidence and limitations
Evidence for SPI-guided analgesia comes pri-

marily from small randomized trials; findings on 
opioid use are mixed [41–45], and pooled analyses 
show no overall reduction [16]. Effects on haemody-
namic/sympathetic stability are modest [16] and in-
consistent across studies [42, 43, 46]. Outcomes are 
largely surrogate, with clinically relevant endpoints 
such as delirium, length of stay, or mortality being 
rarely addressed. Heterogeneity in anaesthetic tech-
niques, comparators, and SPI targets further limits 
synthesis [16, 18]. Almost no data exist for ICU po
pulations. The current evidence is moderate in surgi-
cal settings and low in critical care.

Nociception Level Index
The Nociception Level (NOL) Index is a techno

logy that supports personalized analgesic manage-
ment using a numeric, non-linear scale from 0 (no 
nociception) to 100 (extreme nociception), with 
values above 25 indicating insufficient analgesia 
[47, 48]. It employs a special finger-probe sensor 
platform to continuously collect and analyse phy
siological signals through advanced algorithms. 
The system integrates data from four sensors – pho-
toplethysmography, galvanic skin response, peri
pheral temperature, and accelerometry – to cap-
ture the sympathetic response to noxious stimuli 
[20]. From these inputs, the NOL algorithm extracts 
and evaluates parameters such as pulse rate, pulse- 
rate variability, pulse-wave amplitude, skin con-
ductance level, peripheral temperature, and move-
ment. This multiparametric approach improves 
the detection and quantification of nociceptive 
responses [21, 49].

Clinical evidence highlights the benefits of us-
ing the NOL Index to guide analgesic management 
during surgery. In a prospective RCT, NOL-guided  
opioid titration during major abdominal surgery un-
der sevoflurane/fentanyl anaesthesia led to signifi-
cantly improved postoperative pain scores compared 
to standard care [49]. Similarly, a double-centre RCT 
found that patients undergoing elective abdominal 
surgery reported less postoperative pain when opi-
oid dosing was adjusted based on the NOL Index [50]. 



e372

Justyna Karolina Danel, Jowita Rosada-Kurasinska, Maja Magdalena Copik, Szymon Zdanowski, Wojciech Gola, Hanna Misiołek, et al.

Beyond pain control, studies have linked NOL moni-
toring to enhanced haemodynamic stability during 
major abdominal and gynaecological laparoscopic 
procedures, further demonstrating its clinical utility 
[51, 52]. Notably, a trial regarding abdominal pro-
cedures revealed that NOL-guided analgesia re-
duced remifentanil consumption by approximately 
30%, underscoring its potential to optimize opioid 
use while maintaining effective pain manage- 
ment [52]. 

While NOL monitoring shows promise in criti-
cally ill patients, its application in the ICU remains 
under investigation. Studies suggest that NOL can 
differentiate between nociceptive and non-noci-
ceptive stimuli [53], making it a potentially valu-
able tool for pain assessment in ICU patients. This 
includes those receiving continuous neuromuscu-
lar blockade with deep sedation as well as patients 
managed with light-to-moderate sedation without 
neuromuscular blocking agents [36].

The NOL Index has been compared to common-
ly used pain-assessment tools, including HR, systolic 
blood pressure (SBP), ANI, and the Bispectral Index 
(BIS) [48]. Studies consistently show that all these 
indicators deviate significantly from baseline during 
nociceptive stimulation. The NOL Index outperforms 
the other parameters, underscoring its superior sen-
sitivity and potential clinical utility [36, 47, 48].

In summary, the NOL Index represents a sig-
nificant advancement in nociception monitoring, 
providing a multiparametric and objective method 
to guide analgesic management. Its potential to 
improve intraoperative and critical care pain assess-
ment, reduce opioid consumption, and enhance 
patient outcomes makes it a valuable tool for mo
dern anaesthetic practice. The main limitation of this 
method is that can be influenced by similar factors as 
other autonomic-based indices. 

Quality of evidence and limitations
Clinical studies of the NOL Index include several 

randomized trials [e.g., 36, 39, 40, 42, 54], but most 
are single-centre, and some are industry-sponsored, 
introducing potential bias. Sample sizes are mod-
est, and ICU applications remain investigational, 
with a major trial underway (NCT05339737) [55]. 
Although the 2023 meta-analysis by Bornemann-
Cimenti et al. [56] found statistically significant 
reductions in postoperative opioid use and pain 
intensity with NOL-guided anaesthesia, it showed 
no clinically meaningful benefits; therefore, current 
evidence does not support routine NOL use. More 
independent multicentre studies are needed before 
the tool can be considered for routine practice. Cur-
rent evidence is preliminary and low-to-moderate 
in quality.

NEUROPHYSIOLOGICAL AND AI-BASED TECHNIQUES
Electroencephalography 

A few years after discovering the human elec-
troencephalogram in 1929 and describing sensory 
‘alpha blocking’ (i.e., the suppression of resting oc-
cipital rhythms by sensory input or attention), Hans 
Berger demonstrated (in 1935) that a brief painful 
stimulus (a needle prick) could disturb ongoing 
rhythmic activity. This early observation hinted that 
brain signals might provide objective readouts of 
pain [57, 58]. Systematic electroencephalography 
(EEG) research focused on pain and nociception ac-
celerated much later, from the 1980s on, eventually 
linking quantitative oscillations to perceived intensi-
ty in paradigms of sustained (e.g., tonic heat, alpha-
pain relations), as well as phasic stimulation [59]. 
Broadly, reductions in sensorimotor alpha (8–12 Hz) 
and beta (12–30 Hz) frequencies correlate with 
noxious stimuli, whereas increases in prefrontal/
salience-network gamma (> 30 Hz) correlate with 
reported pain intensity during tonic stimulation 
[60–62]. For brief, phasic noxious stimuli, transient 
increases in low-frequency power (delta 1–4 Hz, 
theta 4–8 Hz), together with gamma event-related 
synchronization, superimposed on sensorimotor  
alpha desynchronization, are characteristic [59]. 
Early machine-learning approaches can detect such 
signatures in real time, but performance is not con-
sistent across patients, states, and drugs [63, 64].

In EEG, two recording approaches matter clini-
cally. Scalp EEG is non‑invasive and easy to deploy 
but blends sources and offers limited anatomical 
specificity. Intracranial EEG has shown nociception-
related activity in operculo-insular and cingulate 
regions, but these findings come from epilepsy-
mapping and experimental settings and are not 
currently applied to pain monitoring [65].

EEG patterns are heavily influenced by drugs, 
sedation depth, movement, and noise; current met-
rics still lack evidence for routine clinical use. Still, 
the experimental patterns above offer anchors:  
alpha/beta reductions index nociceptive drive, while 
frontal gamma relates more to perceived intensity. 
Under general anaesthesia, cortical responses to 
noxious stimuli are state- and drug-dependent, 
which precludes their universal use as markers in 
this context [61, 63]. 

At the same time, EEG-derived or EEG–electro-
myography (EMG) monitors have been tested in 
clinical practice: qCON/qNOX (CONOX) provides 
hypnosis and a probabilistic response-to-noxious-
stimulus index [66]; the GE Entropy module’s RE-SE 
gap reflects facial EMG reactivity and can widen 
with nociception [67]; BIS is a primarily hypnosis 
index, but EMG-related BIS surges during noxious 
stimulation (or neuromuscular-block reversal) are 
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well described [68]; and the fully EEG-based Pain 
Threshold Index (PTI) has shown early promise,  
including a randomized trial of PTI-guided analge-
sia [69]. These tools are available and potentially 
useful/helpful, but the body of evidence is still too 
small for recommendation of their routine use. 

Complementing the oscillation-based EEG 
markers outlined above, nociceptive evoked po-
tentials (EPs) are time-locked cortical responses to 
noxious stimuli that provide an objective probe 
of small-fibre/spinothalamic function, comple-
menting examination, sensory testing and imag-
ing. In practice, several modalities are available [62], 
among which laser-evoked potentials (LEPs) are 
the best established for clinical neurophysiology, 
with the broadest evidence base and sensitivity to 
spinothalamic lesions. Crucially, because EPs need 
timed stimuli and averaging, they cannot track on-
going nociception at the bedside; they are mainly 
used in controlled pain/analgesia studies, not real-
time analgesia titration. As of now, EEG metrics lack 
evidence to inform routine analgesia titration in 
practice, but recent trials are addressing exactly this: 
for example, validation of EEG-guided analgesia in 
older adults undergoing CABG surgery (recently 
completed, NCT05279898), a PICU validation of pro-
cessed EEG (SedLine PSI) for analgosedation in me-
chanically ventilated children (NCT05969483). Col-
lectively, the next steps are standardized pipelines, 
robust normative data, and multicentre outcome 
trials linking EEG-guided decisions to pain, opioid 
use, and recovery. 

Functional near-infrared spectroscopy 
Functional near-infrared spectroscopy (fNIRS) is 

a non‑invasive optical method that measures corti-
cal activity through changes in oxy- and deoxyhae-
moglobin. Its portability makes it especially useful 
in settings where conventional neuroimaging is 
impractical, such as neonatology and anaesthesia.

fNIRS was central to proving that infants both 
feel and process pain – Slater et al. [70] showed 
that heel lance evokes oxygenated haemoglobin 
increases in the contralateral somatosensory cortex 
of newborns. These findings, later corroborated with 
EEG [71] and functional magnetic resonance imag-
ing (fMRI) [72] studies, contributed to overturning 
the outdated belief that neonatal brains were too 
immature for nociception. A 2011 review empha-
sized that cortical responses can be measured even 
when behavioural cues are absent, making fNIRS 
particularly valuable in fragile infants [73]. More re-
cent work has used fNIRS to test interventions such 
as sucrose or skin-to-skin care, with mixed effects on 
cortical activity [74] and to assess pain associated 
with circumcision [75].

In adults, fNIRS detects reproducible cortical 
changes during experimental thermal and mecha
nical pain [76]. Clinically, nociceptive activity has 
been observed during colonoscopy [77] and dur-
ing surgical incision under general anaesthesia [78]. 
Importantly, cortical responses persist under anaes
thesia (although typically attenuated), raising the 
prospect of fNIRS as a monitor of intraoperative noci
ception [79].

Catheter ablation under anaesthesia was shown 
to evoke cortical deactivations measurable with 
fNIRS. A randomized trial further demonstrated that 
remifentanil attenuated these responses compared 
with placebo [79, 80], highlighting its potential for 
guiding intraoperative analgesia.

Although not yet standard practice, several pro
mising uses are emerging. In neonatology, fNIRS may 
complement behavioural scores to provide objective 
pain assessment and evaluate analgesic strategies.  
In perioperative care, forehead probes could be in-
corporated into multimodal anaesthesia monitor-
ing to detect inadequate analgesia before motor 
or autonomic changes occur. Beyond the OR, fNIRS 
may also support assessment in non-communicative 
adults, such as patients with cognitive impairment or 
disorders of consciousness.

Recent advances in signal processing and artefact 
correction are improving the reliability of fNIRS and 
moving it toward clinical application. Functional- 
connectivity studies indicate utility for monitor-
ing responses to non-pharmacological analgesia, 
including virtual-reality interventions for cancer 
pain [81]. In parallel, clinical evaluation is progress-
ing with several trials underway; the role of fNIRS in 
analgesic targeting and routine bedside monitoring 
remains to be defined.

Quality of evidence and limitations
EEG and fNIRS provide valuable mechanistic in-

sights, but clinical validation is scarce. Most studies 
are experimental, involve small samples, and lack 
standardized protocols or reproducible cut-offs. 
Signals are highly susceptible to confounders (seda-
tives, muscle activity, artefacts), limiting generaliz-
ability. At present, evidence quality is low, and these 
techniques remain research tools rather than estab-
lished clinical monitors.

AI-based tools 
From dementia wards to PACUs and ICUs, AI algo

rithms that read behaviour (through analysis of 
faces, voice, and/or motion) are emerging as poten-
tially reliable tools for pain detection. Broadly, ap-
proaches fall into three groups: facial-video systems, 
audio-based classifiers using vocalizations/prosody, 
and multimodal pipelines that fuse face/audio with 
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simple physiology [82]. Facial-analysis apps such as 
PainChek show good reliability in hospital patients 
with dementia but are aids, not replacements, for 
clinical judgment [83]. Beyond dementia care, peri-
operative facial-video models can triage clinically 
significant pain with high accuracy [84]. ICU-focused 
systems are also emerging: a prospective adult-ICU 
study demonstrated feasible automated facial- 
video classification of pain, and a pilot calibration 
trial (NEVVA) during sedation weaning reported 
AUC ≈ 0.79 with reasonable sensitivity/specificity 
[85]. Multimodal pipelines that fuse facial video with 
simple physiology (e.g., heart-rate time series) im-
prove binary detection efficiency, and continuous- 
monitoring approaches combining face/audio with 
ECG/EMG/EDA further strengthen performance [86]. 
In practice, performance is limited by occlusion 
(tubes, masks), variable lighting, oedema, and se-
dation. Within this field, a wide range of tools em-
ploying distinct methodological approaches has 
been proposed, a comprehensive synthesis of which  
was provided by Werner et al. [82]. Ethical (and prac-
tical) issues include known demographic biases 
in common monitors, e.g., pulse oximetry [87], 
and more broadly, dataset bias [88], the need for 
explicit consent and strong privacy safeguards  
for continuous audio/video capture [89], and avoid-
ing over-reliance on surrogate indicators when pa-
tient self-report – the clinical reference standard – is 
available [90]. 

Quality of evidence and limitations
Overall evidence quality is low to moderate, 

driven by single-centre studies, small datasets, sur-
rogate labels, retrospective analyses, and limited 
external validation. Generalisability remains un-
certain due to demographic imbalance, occlusion/
lighting artefacts, device variability, sedation effects, 
and a paucity of prospective trials linking outputs to 
analgesic decisions or patient outcomes.

ACUTE PAIN ASSESSMENT IN THE PAEDIATRIC 
POPULATION

Pain in hospitalized children is often underreco
gnized despite its common occurrence, particularly 
during diagnostic and therapeutic procedures. Accu-
rate pain intensity assessment is crucial for effective 
treatment and outcomes, as it allows for persona
lized interventions that improve quality of life [91]. 
While over 40 validated scales exist for assessing 
acute pain in young children, alongside multidi-
mensional tools for older children, their clinical use 
remains inconsistent, undermining their potential to 
enhance patient care.

Premature infants and newborns pose unique 
challenges, as their inability to communicate ver-
bally necessitates careful observation of beha
vioural cues such as muscle tension, grimacing, and 
positional changes. Nociceptive pathways are ac-
tive from birth [70–72], but descending inhibitory 
mechanisms remain immature, which may enhance 
responsiveness to noxious stimuli [92, 93]. Repeated 
painful exposures, even from routine care, can lead 
to lasting stress, impacting development and po-
tentially causing emotional, behavioural, and cog-
nitive impairments [93]. The therapeutic team must 
therefore prioritize minimizing pain and stress dur-
ing medical care to mitigate these risks.

Additionally, patients with intellectual disabilities 
present further complexities, as their behavioural 
changes can obscure typical pain indicators, com-
plicated by conditions such as seizures or neuro
logical disorders [94, 95]. These challenges high-
light the need for specialized training and tailored 
approaches to ensure effective pain management in 
vulnerable populations.

Behavioural scales
The Face, Legs, Activity, Cry, and Consolability 

(FLACC) Scale (Table 4) and the COMFORT-Behavioral 
Scale (Table 5) are two widely used behavioural 
tools for assessing pain, distress, and sedation in 
paediatric patients. The FLACC scale, introduced in 
1997, is designed to evaluate postoperative, proce-
dural, and acute pain in children, particularly young 
children and those with intellectual disabilities [96]. 
It assesses five parameters – facial expression, leg 

TABLE 4. The Face, Legs, Activity, Cry and Consolability (FLACC) Scale

Indicator Description Score
Face No particular expression or smile 0

Occasional grimace or frown, withdrawn, disinterested 1

Frequent to constant frown, clenched jaw, quivering chin 2

Legs Normal position or relaxed 0

Uneasy, restless, tense 1

Kicking, or legs drawn up 2

Activity Lying quietly, normal position, moves easily 0

Squirming, shifting back and forth, tense 1

Arched, rigid, or jerking 2

Cry No cry (awake or asleep) 0

Moans or whimpers, occasional complaint 1

Crying steadily, screams or sobs, frequent complaints 2

Consolability Content, relaxed 0

Reassured by occasional touching, hugging, or talking; 
distractible

1

Difficult to console or comfort 2
Total score range: 0–10. Interpretation: 0 point – relaxed and comfortable, 1–3 points – mild discomfort, 4–6 points 
– moderate pain, 7–10 points – severe discomfort or pain.
Clinical takeaway: First-line for young children as non-communicative patients.
Merkel SI, Voepel-Lewis T, Shayevitz JR, Malviya S. The FLACC: a behavioral scale for scoring postoperative pain in young 
children. Pediatr Nurs 1997; 23: 293-297 [96]. 
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position, activity, crying, and consolability – each 
scored on a 0–2 scale, resulting in a total score 
of 0–10, where 0 indicates no pain and 10 requires 
immediate intervention [96].

The COMFORT-Behavioral Scale, originally deve
loped for mechanically ventilated children, has been 
validated for use in both ventilated and non-ventilat-
ed paediatric intensive care unit (PICU) patients [97]. 
It evaluates six factors: alertness, calmness/agita-

tion, respiratory response (or crying), physical move-
ment, muscle tone, and facial tension; each is scored 
from 1 to 5, yielding a total score of 6–30. Scores 
indicate oversedation (6–10), moderate sedation 
(11–23), or minimal/no sedation (24–30) [97]. While 
both scales are observational tools for paediatric 
care, the FLACC scale is specific to pain assessment, 
whereas the COMFORT-B scale focuses on sedation 
and distress. Both share the goal of providing stan-

TABLE 5. COMFORT-Behavioral (COMFORT-B) Scale

Indicator Description Score
Alertness Deeply asleep 1

Lightly asleep 2

Drowsy 3

Awake and alert 4

Hyper-alert 5

Calmness/Agitation Calm 1

Slightly anxious 2

Anxious 3

Very anxious 4

Panicky 5

Respiratory response (for ventilated patients) No response to ventilation 1

Minimal response 2

Occasional response 3

Frequent response 4

Severe resistance 5

Respiratory response (for spontaneously 
breathing patients)

Regular breathing, normal rate 1

Occasional mild response 2

Moderate response 3

Marked response 4

Severe response, irregular breathing 5

Physical movement No movement 1

Occasional slight movements 2

Frequent small movements 3

Vigorous movements 4

Extreme, thrashing movements 5

Muscle tone Totally relaxed 1

Reduced muscle tone 2

Normal muscle tone 3

Increased tone, flexed fingers/toes 4

Extreme rigidity/extension 5

Facial tension Relaxed facial muscles 1

Slightly tense (occasional frown, grimace) 2

Tense (frequent frown, clenched jaw) 3

Very tense (jaw clenched, quivering chin) 4

Extreme tension (grimacing, constant frown) 5
Total score range: 6–30. Interpretation: 6–10 – over-sedation, 11–23 – moderately sedated patient, 24–30 – pain or distress (requires intervention).
Clinical takeaway: standard in PICU for ventilated and sedated children.
Ista E, van Dijk M, Tibboel D, de Hoog M. Assessment of sedation levels in pediatric intensive care patients can be improved by using the COMFORT ‘behavior’ scale. Pediatr Crit Care Med 2005; 6: 58-63. 
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dardized methods for monitoring and improving 
patient comfort.

Physiological and neuromonitoring 
techniques in paediatric pain assessment 

In recent years, physiological and autonomic 
methods such as the HRV-derived NIPE index [35], 
pupillometry[27], and skin conductance measure-
ment [98], have been increasingly used to assess 
pain in paediatric populations, especially when ver-
bal communication is limited. These techniques, as 
mentioned earlier, focus on physiological responses 
to pain, with the NIPE index being validated for use 
in neonates, particularly in the NICU, to detect insuf-
ficient pain relief in anaesthetized infants and criti-
cally ill children [99, 100].

However, pain assessment in neonates remains 
challenging due to the immaturity of the central 
nervous system and nonspecific behavioural re-
sponses. While behavioural and physiological scales 
are helpful, they do not directly measure neocortical 
nociception, which is critical for pain encoding and 
central pain pathway development. Brain-oriented 
techniques such as fNIRS [73, 75], EEG [71], and  
fMRI [72] have been employed to assess neonatal 
pain at the cortical level, with evidence suggesting 
that both sensory and emotional pain components 
are active in neonates.

Despite advancements, no single gold standard 
exists for pain assessment in infants and young 
children. Each method has limitations: behavioural 
scales may be influenced by non-pain factors, physio
logical measures such as HRV or skin conductance 
lack specificity, and brain-oriented techniques are 
resource-intensive and impractical for routine use. 
Additionally, pain assessment differs from adults 
due to developmental variations in pain perception 
and expression. For instance, neonates’ underdevel-
oped pain inhibitory systems heighten sensitivity to 
noxious stimuli, necessitating tailored approaches.

Given these challenges, a multimodal strategy 
combining behavioural, physiological, and brain-

oriented techniques is essential to capture pain’s 
multidimensional nature in paediatric populations. 
While no single tool encompasses the full extent 
of the phenomenon of pain and nociception, inte-
grating multiple methods provides a more compre-
hensive understanding, enhancing management 
strategies and improving care for even the young-
est patients.

Quality of evidence and limitations
Pain assessment in children employs diverse 

methods tailored to their needs, each offering dis-
tinct advantages and challenges. Behavioural scales, 
while practical, can be influenced by non-pain fac-
tors. Physiological measures provide objective data 
but may lack specificity. Brain-oriented techniques 
offer direct cortical insights but are impractical for 
routine use. A multimodal approach enhances un-
derstanding, and developmental considerations are 
crucial for accurate assessment.

CONCLUSIONS
Assessing pain in patients who cannot self-

report, across adult and paediatric intensive care, 
remains difficult. Behavioural scales (BPS, CPOT, 
FLACC, COMFORT-B) are the most recommended 
and validated options; they are simple and repro-
ducible but observer-dependent, less reliable with 
deep sedation or neurological impairment, and do 
not capture pain’s multidimensionality. The main 
characteristics of each method are listed in Table 6, 
with children-specific caveats in Table 7.

Autonomic and physiological indices (pupillo
metry, HRV-derived ANI/NIPE, SPI, skin conduc-
tance) provide supplementary information when 
behavioural cues are sparse, including under deep 
sedation or neuromuscular blockade. Evidence for 
these tools is stronger in peri-operative settings 
than in the ICU, where validation is limited and find-
ings are mixed; specificity is further constrained by 
drug effects, haemodynamic instability, and non-
pain stressors.

TABLE 7. Objective pain monitoring methods in paediatrics – main applications and limitations

Method Application Key limitations
Pupillometry (PPI) Correlates with nociceptive stimulation in anesthetized/ 

sedated children
Episodic, influenced by light, drugs,  

and small pupil size in neonates

Skin conductance Detects sympathetic arousal in neonates/ 
infants during painful procedures

Low specificity; stress, fever, or agitation may mimic pain

ANI/NIPE ANI studied in older children; NIPE adapted for neonates, 
sensitive to inadequate analgesia

Confounded by illness, autonomic immaturity, drugs; 
thresholds age-dependent

SPI Explored in paediatric anaesthesia;  
higher values linked to postoperative pain/opioid needs

Interpretation difficult in infants due to high heart rates; 
limited validation

EEG/fNIRS Demonstrates cortical responses to pain in neonates;  
research on anaesthesia and procedures

Remains experimental; requires specialized equipment; 
not bedside-ready
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Neurophysiological approaches (EEG, nocicep-
tive evoked potentials, fNIRS) provide insight into 
central processing but largely remain in the research 
domain and require further clinical validation.  
AI-enabled behavioural monitoring is emerging,  
although performance is affected by occlusion, 
lighting, sedation, device variability, and scarce ex-
ternal validation.

No single tool replaces clinical judgement. 
A multimodal strategy – integrating behavioural as-
sessment, physiological indicators, neurophysiology 
where available, and selected AI-based adjuncts – of-
fers the best prospect for individualised analgesia 
while minimising under- and overtreatment.

FUTURE DIRECTIONS
The evidence base remains dominated by small, 

single-centre studies with heterogeneous meth-
ods; adequately powered multicentre trials should 
evaluate effects on patient-centred outcomes (e.g., 
opioid exposure, delirium, ICU length of stay). Stan-
dardised protocols and thresholds would improve 
reproducibility, and clinically embedded multimod-
al pipelines merit testing. Paediatric and neonatal 
populations are under-studied and require rigorous 
validation and cost-effectiveness analyses for wider 
implementation.
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