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Intra-abdominal hypertension (IAH) and abdominal compartment syndrome (ACS) are
now recognized as important but often underdiagnosed contributors to cardiovascular
instability in critically ill patients. Recent studies have clarified the mechanisms by which
elevated intra-abdominal pressure (IAP) reduces venous return, raises intrathoracic pres-
sure, and impairs both preload and contractility while increasing afterload. These patho-
physiological changes can compromise organ perfusion even at modest IAP elevations,
and the interplay between cardiovascular, renal, and hepatic dysfunction has led to
the concept of the cardio-abdomino-renal syndrome.

Received: 16.08.2025, accepted: 11.09.2025

Advances in monitoring have shifted practice away from static pressure indices such
as central venous and pulmonary artery occlusion pressures. Emerging evidence sup-
ports the use of abdominal perfusion pressure, mean perfusion pressure, and volumetric
indices obtained by transpulmonary thermodilution, alongside echocardiography and
ultrasound-based venous congestion assessment. These tools enable individualized
resuscitation strategies, balancing fluid therapy with the risks of exacerbating IAH.

The purpose of this review is to synthesize recent evidence on the cardiovascular conse-
quences of IAH and ACS, highlight evolving monitoring techniques, and outline current
approaches to management. By integrating updated concepts into clinical practice,
early recognition and targeted interventions may mitigate multi-organ dysfunction and
improve patient outcomes.

CORRESPONDING AUTHOR:

Prof. Hatem Soliman Aboumarie, Department

of Anaesthetics, Critical Care and Mechanical Circulatory
Support, Harefield Hospital, Royal Brompton

and Harefield Hospitals, London, United Kingdom,
e-mail: hatem.soliman@gmail.com

Key words: intra-abdominal hypertension, abdominal compartment syndrome,
intra-abdominal pressure, cardiac output, ventricular function, acute kidney injury,
critical care, fluid therapy, multiple organ failure.

€340

Recent studies have expanded our understand-
ing of the cardiovascular implications of intra-
abdominal hypertension (IAH) and abdominal com-
partment syndrome (ACS). Elevated intra-abdominal
pressure (IAP) can significantly impact cardiovas-
cular function by reducing venous return, thereby
decreasing cardiac preload and output [1]. This re-
duction in preload is primarily due to the compres-
sion of the inferior vena cava, leading to diminished
venous return to the heart.

Monitoring techniques have also evolved. While
traditional methods focus on barometric filling pres-
sures, recent guidelines emphasise the importance
of measuring abdominal perfusion pressure (APP),
calculated as mean arterial pressure (MAP) minus
IAP [2]. Maintaining an APP above 60 mmHg is as-

sociated with improved outcomes in patients with
IAH [3, 4]. Other suggested perfusion indices are
mean perfusion pressure (MPP), calculated as MAP
minus central venous pressure (CVP) [5, 6] and effec-
tive renal perfusion pressure (eRPP), calculated as:
eRPP = MAP - (IAP + CVP + mean alveolar pressure) [7].

The Abdominal Compartment Society (former-
ly known as the World Society of the Abdominal
Compartment Syndrome, WSACS, www.wsacs.org)
is planning to release updated guidelines, high-
lighting the significance of early recognition and
management of IAH/ACS to prevent multiorgan
failure. Previous guidelines recommend regular IAP
monitoring in high-risk patients and a structured
approach to treatment, including both medical and
surgical interventions when necessary [8].
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In terms of treatment strategies, a multifaceted
approach is advocated. This includes strategies to
improve abdominal wall compliance, reduce intra-
luminal and intra-abdominal (fluid) contents and
optimising fluid management to avoid volume ac-
cumulation, using early vasoactive medications to
support APP, and considering surgical decompres-
sion in refractory cases [8]. Early intervention is cru-
cial to prevent the progression of organ dysfunction
associated with elevated IAP. This framework can be
extrapolated to different types of patients and has
been recently developed to prevent acute kidney
injury in patients undergoing cardiac surgery [2].

Recent clinical trials and systematic reviews have
reinforced the importance of individualised resus-
citation endpoints [9]. Tailoring treatment to main-
tain adequate organ perfusion while minimising
the risks associated with elevated IAP is essential.
This personalised approach helps in achieving bet-
ter patient outcomes by balancing the need for fluid
resuscitation with the risk of exacerbating IAH [2].

In summary, advancements in understanding
the cardiovascular effects of IAH/ACS, coupled with
updated monitoring techniques and treatment
guidelines, have enhanced the management of
these conditions. Early recognition and a compre-
hensive, individualised treatment approach are
paramount in improving patient outcomes.

MULTIPLE ORGAN DYSFUNCTION SYNDROME HAS
BEEN DESCRIBED AS THE COMMON FINAL PATHWAY

The role of elevated IAP and its systemic effects
was first described over 100 years ago. Interest in
this topic was revived in the 1970s and 1980s, partly
due to observations related to laparoscopic surgery
and the increased intra-abdominal pressures re-
sulting from peritoneal insufflation [10]. It is now
acknowledged as a potentially hidden cause of
increased morbidity and mortality in patients with
primary intra-abdominal conditions or injuries, or as
a secondary complication arising from pathophysio-
logical abnormalities or their management in other
conditions, such as burns and severe sepsis [11-13].
Recent reviews found that the incidence of IAH after
cardiac surgery ranges between 27-83% [14-16].

In 2007 [17], with an update in 2013 [8], the Ab-
dominal Compartment Society published standard-
ized guidelines on measuring IAP and defining nor-
mal and abnormal pressure ranges. In critically ill
patients, IAP can be measured using an indwelling
Foley catheter with a three-way stopcock [18, 19].
Measurements should be performed with the pa-
tient in the supine position, ensuring relaxed ab-
dominal musculature, and the transducer levelled
where the mid-axillar line crosses the iliac crest.
After instilling a maximum of 20-25 mL of sterile

saline into the bladder, readings are taken at end-
expiration. Normal IAP is considered to be 5-7 mmHg
and pathophysiological changes are seen when it
exceeds 12 mmHg [20]. However, new automated
methods for measurements were proposed, which
allow for regular measurement without requiring
additional device manipulation [21].

IAH is classified as follows:
+ Grade 1: 12-15 mmHg,
+ Grade 2: 16-20 mmHg,
« Grade 3:21-25 mmHg,
« Grade 4: > 25 mmHg.

ACS is defined as Grade 3 IAH accompanied by
new-onset organ dysfunction caused by a combina-
tion of backward and forward failure. Additionally,
ACS and IAH can be classified as primary or second-
ary, depending on whether the underlying disease
or injury originates within the abdominal-pelvic re-
gion [22].

PATHOPHYSIOLOGY OF CARDIOVASCULAR
IMPLICATIONS OF IAH

The primary cause of secondary IAH and ACS
is mainly iatrogenic, resulting from excessive fluid
resuscitation with crystalloid solutions (especially
0.9% NacCl), especially when IAP monitoring is inad-
equate (Figure 1) [23, 24]. The abdominal compart-
ment functions as a complex, closed system inter-
connected with intrathoracic pressure (ITP) through
diaphragmatic positioning and the compliance of
the abdominal wall, which depends on its elasticity
and ability to expand [12, 20, 25].

The more rigid and noncompliant components
of this compartment include the pelvic girdle, pelvic
floor, vertebral column, paravertebral muscles, and
associated structures [25]. In critically ill patients,
second and third spacing — where intravascular
fluid leaks into interstitial or nonvascular compart-
ments — is common [26]. Fluid may accumulate in
the subcutaneous tissues of the abdominal wall, ab-
dominal organs such as the intestines or mesentery,
the peritoneal cavity, and even other cavities such
as the pleural space. Excessive fluid accumulation
can increase the volume of structures within the
abdominal cavity, reduce the elasticity and com-
pliance of the abdominal wall, and cause upward
displacement of the diaphragm. As intra-abdominal
volume increases, reshaping and finally pressurisa-
tion of the abdominal cavity occur and the system’s
overall compliance decreases, leading to a steep rise
in IAP that may occur at lower relative volumes [27].

This complex relationship between the abdomi-
nal cavity, abdominal wall, and thoracic cavity can
be further affected by underlying chronic condi-
tions such as chronic obstructive pulmonary disease
and integumentary diseases (e.g. progressive sys-
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FIGURE 1. Vicious cycle illustrating how ongoing intravenous fluid resuscitation can cause iatrogenic secondary intra-abdominal hyper-
tension and multiple organ failure. Adapted with permission from Malbrain MLNG et al. according to the Open Access CCBY Licence 4.0 [23]

temic sclerosis), or acute injuries, such as eschar for-
mation and tissue oedema from truncal burns [28].
However, the exact nature of volume-pressure curves
for the abdominal cavity and their relationship
with intravenous fluid resuscitation remains un-
known.

A primary haemodynamic effect of IAH and ACS
is a reduction in cardiac output (CO), which may
lead to inadequate perfusion and subsequent isch-
aemia of vital organs. However, the threshold of IAP
at which cardiovascular function becomes compro-
mised varies among individuals. In some patients,
even modest elevations in IAP (e.g., ~10 mmHg) can
impair cardiac performance, while others may main-
tain stable MAP and cardiac output despite signifi-
cantly elevated IAP levels. Mullens and colleagues
[29] found that slight increases in IAP as small as
8 mmHg were related to worsening renal function
in patients with acute decompensated heart failure.
This led to the recognition of the cardio-abdominal-
renal syndrome (CARS) [30].

The mechanism behind reduced CO in IAH is
multifactorial. A key contributor is the upward dis-
placement of the diaphragm, which raises ITP and
impairs venous return to the right atrium. This re-
duction in preload ultimately decreases stroke vol-
ume and CO [31-33]. Patients with reduced circu-
lating volume and those on mechanical ventilation
with positive end-expiratory pressure (PEEP) are
particularly vulnerable, as even minor increases in
IAP can significantly compromise venous return and
cardiac function [34-36].

Additionally, anatomical distortion of the dia-
phragm may lead to compression at the level of the
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diaphragmatic foramen, where the inferior vena cava
(IVC) passes, further obstructing venous return [37].
Elevated ITP also compresses the pulmonary pa-
renchyma and vasculature, increasing pulmonary
vascular resistance (PVR) [38]. This may further
compromise left ventricular (LV) function due to
the principle of ventricular interdependence - right
ventricular (RV) dilation, and dysfunction can cause
septal shift, reducing LV end-diastolic volume and
impairing output.

Moreover, increased ITP can directly decrease
cardiac compliance, limiting ventricular filling and
mimicking a tamponade-like state. This stiffening of
the cardiac chambers restricts end-diastolic volume
and further reduces output.

Systemic vascular resistance (SVR) is also af-
fected in complex ways. Vasoconstriction may oc-
cur as a compensatory response to falling CO or as
a side effect of vasoactive agents. Additionally, third
spacing from fluid resuscitation can lead to tissue
oedema, further compressing the microvascular
beds and exacerbating resistance and impairing
tissue perfusion. While patients with preserved car-
diac function may have sufficient physiological re-
serve to compensate for these changes, those with
pre-existing cardiac disease or hypovolaemia may
exhibit more pronounced haemodynamic deterio-
ration.

Importantly, the consequences of IAH extend
beyond direct cardiovascular compromise [39].
Blood flow to other organs is often significantly
reduced in patients with ACS, and these ischaemic
changes may influence the distribution and clear-
ance of inflammatory mediators [40]. For example,

Reduced blood flow
to the heart
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mesenteric arterial flow may be diminished, and
venous pressures increased [41, 42], leading to
intestinal oedema, ischaemia, and loss of gut bar-
rier integrity [43]. These alterations may facilitate
bacterial translocation and the systemic spread
of intraluminal toxins [44-46]. Similarly, hepatic
blood flow can be impaired, disrupting microcir-
culation and causing ischaemic liver injury [47, 48].
Hepatic dysfunction may impair metabolic pro-
cesses, including clearance of lactate and other
mediators absorbed from the gut [49]. Renal func-
tion is also commonly affected, with reductions
in renal arterial inflow, elevations in venous pres-
sure, and shunting away from the renal cortex —
all contributing to a decreased glomerular filtra-
tion rate [50]. A recent systematic review showed
that patients with IAH have 2.57-fold higher risk
of AKI compared to patients without IAH [51].
Impairment of hepatic and renal function may fur-
ther alter the balance of circulating inflammatory
mediators, perpetuating systemic haemodynamic
instability. Together, these changes illustrate the
profound and widespread impact of IAH and ACS
on cardiovascular and organ function, underscoring
the need for early recognition and intervention.

Cardiovascular dysfunction and failure and hae-
modynamic instability are commonly encountered
in patients with IAH or ACS. The various effects are
listed in Table 1 [23].

HAEMODYNAMIC ASSESSMENT AND CLINICAL
MANAGEMENT

Managing haemodynamics in the setting of IAH
and ACS can be particularly challenging. Impor-
tantly, the risk of organ ischaemia should not be
evaluated solely on the basis of absolute IAP val-
ues, but rather in conjunction with APP, calculated
as MAP minus IAP (APP = MAP — IAP). A low APP,
particularly in cases of elevated IAP combined with
hypotension, is more likely to result in compromised
organ perfusion and tissue ischaemia. Therefore,
in the context of raised IAP, one of the key therapeu-
tic goals is to maintain or elevate MAP with early
vasopressors in order to preserve adequate APP.
Traditional intravascular pressure monitoring me-
thods — such as CVP or pulmonary artery cathe-
terisation — may be unreliable and potentially mis-
leading in patients with elevated IAP. Studies have
shown a poor correlation between pulmonary ar-
tery occlusion pressure (PAOP or wedge pressure)
and actual LV preload or CO [53, 54]. As a result,
alternative approaches to haemodynamic assess-
ment should be considered. This gave rise to the
concept of the polycompartment syndrome where
increased compartmental pressure affects other
compartments [55-57].

Echocardiography, particularly transthoracic
echocardiography (TTE), has emerged as a valuable,
non-invasive tool for real-time evaluation of car-
diac function in critically ill patients with ACS [58].
It enables assessment of IVC diameter and collapsi-
bility, biventricular size and function, septal motion
abnormalities, ventricular interdependence, and
non-invasive estimates of cardiac output. A sub-
costal view can assess IVC diameter, and significant
respiratory variation may indicate reduced venous
return. Notably, complete IVC collapse suggests
that IAP exceeds right atrial pressure. Assessment
of systemic venous congestion could be performed
by ultrasound assessment of hepatic, portal and
renal venous flow [59-61]. Echocardiography can
be used serially to monitor fluid responsiveness,
preload status, and therapeutic response, making
it a cornerstone of dynamic haemodynamic assess-
ment in ACS.

Maintaining adequate intravascular volume re-
mains essential in managing critically ill patients.
However, there is currently no definitive guidance
on the volume of crystalloid resuscitation that may
increase the risk of IAH. Inadequate volume resusci-
tation can exacerbate the effects of mildly elevated
IAP, while excessive resuscitation — particularly with
crystalloids, 0.9% NaCl - has also been associated
with adverse outcomes, including increased mor-
tality [53, 62]. Emerging evidence suggests that
excessive fluid administration may directly contri-
bute to raised IAP and the development of ACS [62].
Thus, fluid resuscitation and the use of vasopressors
should be tailored and guided by a combination of
clinical judgement, haemodynamic monitoring, bio-
chemical markers, and diagnostic imaging. Continu-
ous monitoring of IAP is crucial, particularly in pa-
tients undergoing aggressive fluid therapy or those
exhibiting signs of worsening organ dysfunction [8].

Optimal haemodynamic management of ACS is
based on several foundational principles: a) clinical
awareness of the potential for elevated IAP is essen-
tial, b) routine IAP monitoring should be performed
in patients at high risk of developing IAH, c) pre-
ventive strategies, including judicious fluid admini-
stration and avoidance of indiscriminate crystalloid
(saline) use, should be implemented, d) volumetric
assessment of haemodynamics should guide re-
suscitation decisions rather than relying solely on
pressure-based metrics, e) integrated management,
considering all aspects of IAH, should be adopted.
This includes gastrointestinal decompression, intra-
peritoneal drainage, ventilator optimisation, fluid re-
moval via diuretics or renal replacement therapy, and,
when necessary, surgical decompression with tem-
porary abdominal closure. Of note, although previous
case reports described IAH in patients who received
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TABLE 1. Cardiovascular effects related to increased IAP* [23]. Adapted with permission from Malbrain et al. according to the Open Access CC BY Licence 4.0

Cardiovascular effects

1. Preload (filling) | *

Intrathoracic milieu

Diaphragm elevation — cardiac compression

Pleural and intrathoracic pressure 1

Pressures used to estimate preload 1

Pulmonary-artery occlusion pressure (PAOP) 1

Central venous pressure (CVP) T

Mean systemic filling pressure 1

Transmural filling pressure —/ | (pressure outside the heart rises with ITP)

Difficult bedside (barometric) preload assessment (static “filling” pressures unreliable)

True volumetric indices |

Intra-thoracic blood volume index (ITBVI) —/
Global end-diastolic volume index (GEDVI) —/|
RV end-diastolic volume index (RVEDVI) —/|

Left ventricular end diastolic area index (LVEDAI) —/|

Dynamic/functional indices 1

Stroke-volume variation (SVV) 1

Pulse-pressure variation (PPV)

Systolic-pressure variation (SPV) 1 (Adown —, Aup 1)

False-negative passive-leg-raising test more common

Fluid-responsiveness thresholds 1

Venous return |

Inferior vena cava flow |

Venous return |

Abdominal West zone excursions from zone 1 to zone 3 (Figure 5)

Net effect: preload is actually reduced, despite higher static filling pressures, because the pressure surrounding the heart/lungs is also elevated and venous return is impeded.
2. Afterload 1*

Systemic vascular resistance (SVR) 1

Mean arterial pressure (MAP) —/| (depends on volume status and compensatory tone)

Pulmonary artery pressure (PAP) 1

Pulmonary vascular resistance (PVR) 1

Raised abdominal- and intra-thoracic pressures compress arterial beds and subsequently increase sympathetic tone, driving SVR and PVR up.

3. Contractility/Cardiac performance | *

LV compliance and intrinsic contractility | Frank—Starling curve shifts downward/rightward

Right, global and left-ventricular ejection fractions —/ |

Heart rate —/| (often blunted by vagal tone or relative hypovolaemia)

Stroke volume |

Cardiac output |
dP_ |

max

The heart operates on a stiffer pressure—volume curve and at a lower output for any given filling pressure.

4. Thrombo-embolic and venous sequelae 1

Hydrostatic venous pressure in lower limbs 1

Venous stasis, oedema and venous ulcers T

Venous thrombosis risk T

Pulmonary embolism risk 1 (especially on rapid decompression)

Poor wound healing
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TABLE 1. Cont.

Cardiovascular effects

5. Other haemodynamic/oxygenation consequences

Abdominal perfusion pressure, APP = MAP — IAP |

Mean perfusion pressure, MPP = MAP — CVP |

Effective renal perfusion pressure, eRPP = MAP — |AP — CVP (— mean P

alv’

if mechanically ventilated) |

Extra-vascular lung water (EVLW) 1 (despite compression of the pulmonary micro-vasculature)

Pulmonary vascular permeability index (PVPI) 1

Atelectasis and shunt 1

Mixed and central-venous 0, saturation |

po, |

pCo, 1

Lactate 1

*Cardiovascular effects are exacerbated in case of hypovolaemia, haemorrhage, ischaemia, auto-PEEP or high PEEP ventilation.

non-invasive ventilation (NIV), in a recent study the
use of NIV was not associated with an increased
incidence of IAH after 24 hours of NIV use [63].
Therefore, IAH should not be considered a contrain-
dication for NIV if it is required [64].

A comprehensive, multidisciplinary approach
that incorporates accurate haemodynamic assess-
ment and proactive |AP monitoring is vital to im-
proving outcomes in patients with ACS.

Cardiac function can be broadly characterised
by three fundamental components: preload, con-
tractility, and afterload. Elevated IAP adversely af-
fects each of these interconnected elements, as
outlined below (see also Table 1) [65].

EFFECT OF IAH ON CARDIAC PRELOAD
Pathophysiology

Elevated IAP exerts multiple detrimental effects
on cardiovascular physiology, primarily through
direct vascular compression and upward displace-
ment of the diaphragm. Compression of the IVC
impairs venous return from the lower body, while
diaphragmatic elevation increases ITP and results
in cardiac compression (Figure 2). These changes
collectively disrupt preload, compromise CO, and
complicate haemodynamic assessment.

One of the key challenges in patients with IAH
or ACS is the difficulty in accurately assessing pre-
load. Standard barometric filling pressures, such
as CVP and PAOP, are zeroed against atmospheric
pressure. However, in the setting of IAH, elevated
ITP - caused by upward displacement of the dia-
phragm — elevates these pressures, limiting their
reliability as true indicators of ventricular preload
[23, 66].

As originally described by Coombs [67], increased
ITP from diaphragmatic elevation is directly transmit-
ted to intravascular compartments. This not only raises
measured CVP and PAOP values but also significantly

impairs blood flow through the IVC, thereby reduc-
ing venous return in a pressure-|dependent manner
[68, 69]. This leads to a corresponding increase in
IVC, hepatic, portal vein and femoral vein pressures,
parallel to elevations in IAP, and some studies have
proposed that IVC pressure may serve as a surro-
gate marker for IAP itself [70]. Furthermore, as IAP
rises, the diaphragm compresses and narrows the
IVC at its passage through the diaphragmatic hia-
tus, further impeding venous return. Notably, such
IVC compression may occur at IAP levels as low as
10 mmHg [71]. The resultant decrease in venous re-
turn leads to a reduction in stroke volume and, conse-
quently, cardiac output. This decline may be reflected
in reduced mixed venous oxygen saturation (SvO,)
and central venous oxygen saturation (ScvO,). How-
ever, significant elevations of IAP in patients with ab-
dominal ACS could even dampen flow in the hepatic
and portal veins due to venous compression [72].

Similar physiological changes have been ob-
served during laparoscopic surgery, where transient
increases in IAP lead to comparable haemodynamic
alterations. Importantly, in the context of IAH, these
changes also heighten the risk of deep vein throm-
bosis and pulmonary embolism, particularly during
or after abdominal decompression [73, 74].

In cases of chronic IAH, such as in obesity, sus-
tained venous congestion may elevate hydrostatic
pressures in the lower extremities. Clinical manifes-
tations may include venous stasis, peripheral oe-
dema, and, in severe cases, venous ulcers.

Intracardiac filling pressures are unreliable
during IAH

According to the Frank-Starling principle, ven-
tricular preload is defined as the length of myocar-
dial muscle fibres at end-diastole (Figure 3) [23].
In clinical practice, the ideal surrogate for this would
be the LV end-diastolic volume (LVEDV); however,
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APP — abdominal perfusion pressure, CVP — central venous pressure, DVT — deep venous thrombosis, EDV — end-diastolic volume, EEO — end expiratory occlusion, FC — fluid challenge, IAP — intra-abdominal pressure,
ITP — intrathoracic pressure, IVC — inferior vena cava, LV — left ventricular, MAP — mean arterial pressure, PAOP — pulmonary artery occlusion pressure, PE — pulmonary embolism, PLR — passive leg raising, PPV — pulse
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FIGURE 2. Cardiovascular effects (on preload, afterload and contractility) related to increased intra-abdominal pressure

Changin Mitral

.g 9 Catheter
ventricular valve o

. . position
compliance disease

Preload

Elevated intrathoracic
or intra-abdominal pressure

Altered ventricular
geometry

FIGURE 3."The PAOP Assumption”: why intracardiac filling pressures such as pulmonary artery occlusion pressure do not accurately estimate preload status.

First, ventricular compliance is constantly changing in critically ill patients, resulting in a variable relationship between pressure and volume. As a result,

changes in intracardiac pressure no longer directly reflect changes in intravascular volume. The presence of intra-abdominal hypertension (IAH) decreases
left ventricular compliance by causing a rightward shift and flattening of the Frank-Starling curve. Second, the elevated intrathoracic pressure associated with

IAH has been shown to increase pulmonary artery occlusion pressure (PAOP) and central venous pressure (CVP) measurements by an unpredictable amount,

further compromising their reliability. This apparent deviation from Starling’s Law of the Heart arises because both PAOP and CVP are measured relative to
atmospheric pressure but actually reflect the sum of intravascular and intrapleural pressures. Third, mitral valve disease can further confound the use of PAOP
as an estimate of intravascular volume. Patients with IAH-induced pulmonary hypertension or acute lung injury often have elevated pulmonary vascular
resistance and are at significant risk for mitral valve regurgitation. Fourth, accurate PAOP measurements depend on correct placement of the pulmonary
artery catheter (PAC). Elevated intra-abdominal pressure can compress the pulmonary parenchyma, altering the normal patterns of alveolar distention and
pulmonary capillary pressures as described in West’s lung zones 1, 2, and 3. IAH-induced cardiac and pulmonary dysfunction can distort pulmonary artery
waveforms, making correct PAC tip placement in West’s zone 3 challenging. Inadvertent placement in apical zone 1 often leads to PAOP measurements that
reflect alveolar rather than left atrial pressure. Adapted with permission from Malbrain MLNG et al. according to the Open Access CC BY Licence 4.0 [23].
LVEDV - left ventricular end-diastolic volume, LVEDP — left ventricular end-diastolic pressure, LAP — left atrial pressure
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this parameter is difficult to measure reliably and
repeatedly at the bedside [53, 66]. Assuming that
ventricular compliance remains unchanged, varia-
tions in ventricular volume would theoretically cor-
respond to changes in ventricular pressure through
the following relationships:
Compliance = AVolume / APressure
and AVolume is almost equal to APressure

Pressure-derived measurements such as left
ventricular end-diastolic pressure (LVEDP), left atrial
pressure (LAP), PAOP, and CVP have traditionally
been used in clinical settings as surrogate markers
of intravascular volume. While these parameters
may provide reasonable estimates in healthy indi-
viduals, their accuracy is limited in critically ill pa-
tients with I1AH or ACS, where the assumptions re-
quired for interpreting PAOP and CVP as indicators
of left and RV preload often do not apply (Figure 3).

Haemodynamic monitoring can only benefit pa-
tient management when clinicians are well versed
in both the appropriate use and the inherent limi-
tations of these measurements. In the physiologi-
cally complex setting of IAH or ACS, targeting fixed
PAOP or CVP thresholds during resuscitation may be
misleading. This approach risks inappropriate inter-
ventions, potentially resulting in under-resuscitation
and subsequent organ dysfunction. Therefore, resus-
citation strategies should be guided by a more com-
prehensive and individualised assessment rather
than relying solely on absolute pressure values.

Improvement of barometric preload indices
(transmural cardiac filling pressures)

In the context of elevated IAP and ITP, traditional
filling pressures such as PAOP and CVP can be mis-
leading. To improve accuracy, transmural pressures
(PAOP,_ and CVP_) are calculated by subtracting ITP
from end-expiratory PAOP or CVP [35, 38, 70]. Since

ITP is often estimated via pleural pressure (Ppl), typi-
cally measured with an oesophageal balloon, and
around 50% of IAP is transmitted to the thoracic
cavity, a practical bedside estimate is [75]:
VP, =CVP_—IAP/2
PAOP_ = PAOP_ —IAP/2
Alternatively, the abdomino-thoracic index of
transmission (ATI) can be calculated as follows by
measuring changes in CVP and IAP, allowing a more
precise adjustment (Figure 4) [23]:
ATI = ACVP/AIAP
VP, =CVP_— (ATI x IAP)
PAOP_ = PAOP__ — (ATI x IAP)

An alternative method to assess the Tl of PEEP
to barometric filling pressures can be calculated as
follows [76]:

CVPtm = CVPee — TI X PEEPtot, with Tl =
= (CVPei — CVPee)/(Pplat — PEEP)

Although calculating transmural filling pressures
is physiologically sound and may better estimate
preload in patients with IAH or ACS, it is not currently
recommended in clinical practice. Studies have not
shown that direct measurement of pleural pressure
using an oesophageal catheter improves the abil-
ity of PAOP to predict volume responsiveness [75].
Since PAOP and CVP reflect both intravascular pres-
sure and intrathoracic pressure, and because ven-
tricular compliance fluctuates beat-to-beat in criti-
cally ill patients, pressure-based measures lose their
reliability as indicators of true intravascular volume
or preload status.

Role of volumetric preload monitoring in IAH

Volumetric preload monitoring offers a more
accurate assessment of cardiac preload in patients
with IAH by directly measuring cardiac volumes
rather than relying on pressure-based surrogates.

20
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FIGURE 4. Calculation of the abdomino-thoracic index of transmission (ATI) at the bedside. Simultaneous central venous pressure (CVP)
and intra-abdominal pressure (IAP) tracing before and during abdominal compression (e.g. by applying an abdominal Velcro belt).
The ATl can be calculated as follows: the change in end-expiratory CVP (ACVPee = 13.5 — 8.5 mmHg = 5 mmHg) divided by the change
in end-expiratory IAP (AlAPee = 11 — 2 = 9 mmHg) and expressed as a percentage. ATl = ACVP/AIAP = 5/9 = 55.6%. Adapted with
permission from Malbrain MLNG et al. according to the Open Access CC BY Licence 4.0 [23]
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Two main methods are used: continuous measure-
ment of right ventricular end-diastolic volume in-
dex (RVEDVI) via a pulmonary artery catheter (PAC),
and intermittent global end-diastolic volume in-
dex (GEDVI) using transpulmonary thermodilution
(TPTD) systems such as PiCCO or EV1000.

RVEDVI is calculated as stroke volume index (SVI)
divided by right ventricular ejection fraction (RVEF),
providing a preload estimate independent of fluctu-
ating ventricular compliance and elevated intratho-
racic or intra-abdominal pressure. It has been shown
to reliably predict volume responsiveness in various
patient groups [77, 78].

PiCCO is a less invasive haemodynamic monitor-
ing tool which combines calibrated TPTD and arte-
rial pulse contour analysis [79]. Unlike uncalibrated
systems (e.g., Vigileo), the calibrated PiCCO system
offers improved accuracy [80, 81].

Additional parameters derived from TPTD in-
clude global ejection fraction (GEF), calculated as

GEF = (4 % SVI)/GEDVI

and measurements of extravascular lung water
(EVLW), both of which help assess cardiac function
and fluid status [82]. These volumetric measures
provide valuable insights into preload status and
capillary leak, particularly in critically ill patients
with [AH.

Echocardiography plays a key role in predicting
fluid responsiveness, typically defined as an increase
in stroke volume (SV) of 15% or more following
an intravenous fluid bolus. Studies have shown that
40-70% of patients in shock demonstrate a positive
response to volume expansion [83]. Echocardiogra-
phy provides both static and dynamic methods to
assess fluid responsiveness in critically ill patients.
Static measures, though limited in predictive accu-
racy, can offer contextual information, especially at
extremes of volume status. Systolic obliteration of
the LV cavity can be evaluated by tracing the en-
docardium at end diastole in parasternal short axis
(SAX) view via TTE or deep transgastric SAX view
via transoesophageal echocardiography (TEE).
While the IVC diameter and LV end-diastolic area
(LVEDA) are not considered reliable indicators of
fluid responsiveness, they may offer useful insights
into volume status when interpreted cautiously
[84, 85]. IVC measurements are commonly used to
estimate right atrial pressure (RAP): IVC diameter
< 2.1 cm with > 50% inspiratory collapse — RAP
~3 mmHg. IVC diameter > 2.1 cm with < 50% in-
spiratory collapse — RAP ~15 mmHg. Dynamic
indices, on the other hand, are more reliable and
are based on changes in preload or heart-lung in-
teractions. Techniques include observing responses
to: a fluid bolus, passive leg raising (PLR), which
provides a reversible auto-bolus of ~300-500 mL,

€348

and respiratory variations in vena cava dimensions
[86-88]. Among dynamic indices, SVC collapsibility
is considered the most reliable predictor of fluid
responsiveness [89]. In spontaneously breathing
patients and those with arrhythmias, PLR is the
preferred assessment tool.

As previously discussed, IAH often leads to car-
diac dysfunction and a reduced ejection fraction,
evidenced by decreases in both RVEF and global
ejection fraction (GEF). Given the dynamic nature of
ventricular compliance in such patients, there is no
universal target value for RVEDVI or GEDVI suitable
for all cases of IAH or ACS [77, 78]. Instead, fluid re-
suscitation must be tailored to each patient, aiming
to achieve the end-diastolic volume that optimises
preload and systemic perfusion in that patient’s spe-
cific clinical context. Notably, adjusting GEDVI rela-
tive to the underlying GEF enhances its predictive
value as a marker of preload and improves its utility
in assessing fluid responsiveness [90].

EFFECT OF IAH ON CARDIAC CONTRACTILITY
Pathophysiology

IAH can significantly impair cardiac contractility
due to the elevation of the diaphragm and the rise
in ITP, both of which exert direct compressive forces
on the heart (Figure 1). This compression also affects
the pulmonary parenchyma, leading to increased
pulmonary artery pressure (PAP) and elevated PVR,
while simultaneously reducing LV preload.

As RV afterload rises, the thin-walled RV com-
pensates by dilating, resulting in a decline in RVEF.
This dilation can cause the interventricular septum
to shift toward the LV cavity, further compromising
LV filling and output. This phenomenon of interven-
tricular interdependence can severely impair biven-
tricular function and reduce CO. Echocardiography
is a valuable tool in detecting these changes in pa-
tients with IAH [58, 90, 91].

Animal studies consistently demonstrate a de-
cline in CO with rising IAP [35, 38, 70, 92]. In pae-
diatric patients, Huetteman et al. [93] showed that
anteroseptal LV wall motion decreased significantly
at IAP levels as low as 12 mmHg during laparoscopic
herniorrhaphy [93]. RV function may become worse
in severe IAH which leads to worsening LV filling
and CO [94, 95]. Moreover, in patients with heart
failure, elevated CVP and IAP are both independent
predictors of acute kidney injury. This interplay be-
tween cardiac dysfunction, raised IAP, and renal im-
pairment has been termed CARS [29]. While early
stages of IAH may respond to fluid resuscitation and
inotropic therapy, advanced cases with pronounced
biventricular dysfunction typically require non-
surgical measures to reduce IAP or surgical abdomi-
nal decompression to restore cardiac function.
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Zone 3: CVP > IVCP > |IAP

Abdominal perfusion pressure

Early efforts to identify a single “critical” IAP
value to guide decision-making in IAH and ACS have
proven overly simplistic. The pathophysiological re-
sponse to elevated IAP is highly individualised and
can vary not only between patients but also over
time in the same patient [23, 96]. Therefore, a fixed
IAP threshold is not universally applicable to criti-
cally ill patients [97].

To enhance clinical decision-making, APP - cal-
culated as MAP minus IAP — has been proposed as
a more physiologically relevant resuscitation target,
similar to cerebral perfusion pressure (CPP).

APP = MAP — IAP

Maintaining an APP of 50-60 mmHg may serve
as a more effective endpoint for resuscitation than
traditional macro- and microcirculatory markers.
Studies suggest that APP outperforms other parame-
ters such as arterial pH, lactate, base deficit, and
urine output (UO) in predicting survival in surgical
patients with IAH or ACS [3].

A recent prospective study in patients with criti-
cally ill patients with liver cirrhosis showed that high
APP correlated with worse outcomes [4]. However,
despite the theoretical advantages and promising
findings, APP lacks robust validation through large-
scale, prospective multicentric trials. As such, while
it may be a useful adjunct in assessing perfusion in
IAH, current evidence is insufficient to recommend
APP as a standard resuscitation endpoint.

EFFECT OF IAH ON AFTERLOAD

Elevated IAP and ITP contribute to increased af-
terload by mechanically compressing the aorta and

Zone 2: CVP > |AP > IVCP

systemic vasculature, thereby raising SVR, and by
compressing the pulmonary parenchyma, which
elevates pulmonary vascular resistance (PVR). Ad-
ditionally, organ compression may disrupt neuro-
hormonal regulation, including activation of the re-
nin-angiotensin—aldosterone system [98, 99]. More
commonly, however, elevated SVR develops as a com-
pensatory mechanism in response to reduced venous
return and declining SV. This compensatory vasocon-
striction often helps maintain MAP in the early stages
of IAH or ACS, despite declining cardiac output.

Patients with compromised cardiac function or
reduced intravascular volume may not tolerate these
increases in afterload, leading to further haemody-
namic instability [77, 100-102].

The concept of abdominal vascular zones, analo-
gous to West’s pulmonary vascular zones, helps ex-
plain changes in venous return in IAH (Figure 5) [52].
When the transmural pressure of the IVC — defined
as IVC pressure minus IAP — exceeds a critical clos-
ing threshold (Zone 3 abdomen) [65], venous return
is preserved. This typically occurs in hypervolaemic
states, where the abdominal venous compartment
acts as a capacitance reservoir.

Conversely, in hypovolaemic conditions (Zone 2
abdomen), where the transmural IVC pressure falls
below this threshold, venous return is significantly
impaired. In this setting, the abdominal venous
compartment behaves like a collapsible Starling re-
sistor [103]. These dynamics are particularly relevant
in hypovolaemic or non-cardiogenic shock patients,
especially when positive pressure ventilation and
high PEEP levels are used, both of which further re-
duce CO under elevated IAP [103].

- - -
- -
~
~

“vep ‘
IAP

Zone 1: IAP > IVCP > CVP

FIGURE 5. Abdominal West zones. The abdomen can be divided into discrete regions according to the interplay between intra-abdominal pressure (IAP),
central venous pressure (CVP) and inferior vena cava pressure (IVCP). These regions are zone 1, where IAP is higher than IVCP or CVP; zone 2, where the IAP
is lower than the CVP but higher than the IVCP and zone 3, where both CVP and IVCP are higher than IAP. Other contributing factors (but more difficult to
assess) are the compliance of the lungs (CL), chest wall (CCW) and abdominal wall (CAB) as well as the use of positive pressure ventilation with positive
end-expiratory pressure (PEEP) and intrathoracic pressure (ITP). Adapted with permission from Malbrain MLNG et al. according to the Open Access CC BY
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Additionally, mean systemic filling pressure may
increase during IAH, as observed in preeclamptic
pregnancies [104] and critically ill patients [105],
possibly explaining the heightened risk of pulmo-
nary oedema with even minimal fluid administra-
tion in such scenarios.

EFFECT OF IAH ON FUNCTIONAL HAEMODYNAMICS
AND FLUID RESPONSIVENESS

Elevated IAP raises intrathoracic pressure, driv-
ing up stroke-volume variation (SVV), pulse-pressure
variation (PPV) and the Aup component of systolic-
pressure variation. Yet these shifts do not automati-
cally indicate fluid responsiveness: they can reflect
altered aortic compliance, measurement artefacts,
or changes in pleural pressure and chest-wall
mechanics. When IAP reaches roughly 25 mmHg,
PPV still predicts volume response, but its best
cut-off rises to =20.5% instead of the usual 12%.
Any threshold must be adjusted for tidal volume,
PEEP, obesity, heart or lung disease, pneumoperito-
neum, and paediatric status. Clinically, PPV outper-
forms the ostensibly “purer” SVV, hinting at complex
waveform effects of intrathoracic pressure. Notably,
in a severe-pancreatitis model, SVV-guided resuscita-
tion improved survival and microcirculation - find-
ings that may translate to patients with IAH [102].

Roughly 25% of ICU patients show PPV > 12%
yet still fail to respond to fluids, often because right-
ventricular dysfunction inflates the value [103].
Passive-leg-raising (PLR) can be equally deceptive:
high IAP limits venous return and turns true re-
sponders into false negatives [104, 105], Because
PLR’s “auto-infusion” varies with body habitus and
starting posture, IAP should always be checked
when interpreting the test. A PLR from a 45° head-
of-bed position further elevates IAP and adds little
leg flow; from supine it leaves IAP unchanged but
still misses mesenteric return; Trendelenburg lowers
IAP and boosts venous return from both legs and
splanchnic beds (Figure 6 and 7) [105].

SUGGESTED RECOMMENDATIONS

These recommendations are suggested and
merely reflect the personal experience of the co-
authors. They do not aim to provide an exhaustive,
graded and concise overview of the literature, as
current evidence is mostly limited to observational,
retrospective or small clinical studies, and more ran-
domized trials are needed to better establish a per-
sonalized approach to fluid management. These
recommendations could however form the basis for
a more elaborated consensus statement via a modi-
fied Delphi methodology.

1. Monitoring. Every patient with septic shock
should be adequately monitored with regard to
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10.

1

—_

12.

13.

cardiac output, fluid status, fluid responsiveness
and organ perfusion.

. IAP monitoring. When 2 or more IAH risk factors

are present, baseline IAP monitoring should be
obtained via the bladder.

. Continuous IAP monitoring. When available, con-

tinuous IAP monitoring is preferred over intermit-
tent.

. Cardiac output. When treating shock patients, by

definition, CO should be monitored to identify
patients with low or high CO and to assess the
response to treatment. A calibrated technique,
either PAC or TPTD, is preferred.

. Barometric preload. Barometric preload indicators,

such as CVP or PAOP, should not be used to guide
fluid resuscitation in patients with septic shock
and/or IAH.

. Chasing a static CVP target of 8 to 12 mmHg as

the resuscitation endpoint may lead to over- or
under-resuscitation and should be abandoned.

. Transmural filling pressures, or their estimates,

may better reflect the true preload status (es-
pecially in patients with high PEEP and IAP) and
thus could be a better resuscitation endpoint.

« CVPtm = CVPee - IAP/2;

« CVPtm = CVPee - Tl x PEEPtot.

. Perfusion pressure. Chasing a static MAP target

of 65 mmHg may be too low or too high, and
therefore MAP should be tailored individually.

. In patients with abdominal hypertension, perfu-

sion pressures should be calculated:

« APP, calculated as MAP minus IAP, may be
a better resuscitation endpoint;

+ MPP = MAP - CVP;

« eRPP =MAP - IAP - CVP - Palv.

UO monitoring. UO is a poor endpoint that may

lead to over- or under-estimation of fluid resus-

citation and, as such, can no longer be recom-
mended. When available, continuous UO moni-
toring should be used.

« However, in situations with limited monitoring
techniques, e.g., in Low- and Middle-Income
Countries (LMICs), UO can still be used to guide
fluid resuscitation.

. Mixed venous saturation. As chasing an ScvO, tar-

get of 70% in isolation does not make sense, ScvO,
should always be seen in relation to previous
history, co-morbidities and actual lactate levels.
Volumetric preload. Volumetric preload indica-
tors (such as RV or global end diastolic volume)
are superior compared to those which are baro-
metric and are recommended to guide fluid
resuscitation, especially in septic patients with
increased ITP or |AP.

If the RVEDVI or GEDVI is high, the measurement
needs to be corrected for the global ejection
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Position during PLR

Advantages

Disadvantages

HOB 45° Nl

PPV

No risk for VAP
No increase in ICP

No risk for VAP
No increase in ICP

Labour intensive
Unclear (rather small)
amount of
autotransfusion from

legs

Labour intensive
Increases IAP
(lung compression)
No autotransfusion

Position during PLR
PPVI

Advantages

Easy to perform
Combination

of endogenous
transfusion from legs
and mesenteric veins

Disadvantages

Risk for VAP

Unclear amount of
autotransfusion

Risk for ICP increase

PPVTT No increase in IAP Risk for VAP
{no lung Risk for ICP increase
compression) Only small amount of
Easy to perform autotransfusion
(from legs)
.
Starting position Position during PLR Advantages Disadvantages
PPV~ PPVLL Easy to perform Biggest risk for VAP

Combination
of endogenous
transfusion from legs

Unclear amount of
autotransfusion
Biggest increase in

and mesenteric veins | ICP

PPV1T Decrease in IAP Biggest risk for VAP
(effects on lungs Biggest increase in
unclear) ICP

Easy to perform
Probably highest
amount of

auto- transfusion in
case of IAH

FIGURE 6. Effects of different passive leg raising tests. Schematic overview comparing the possible effects and (dis)advantages of PLR test in (A) HOB 45°,
(B) supine, (C) Trendelenburg during normal IAP and IAH. Schematic overview comparing the possible effects and (dis)advantages of different passive leg raising
(PLR) tests during normal IAP and IAH. The PLR can be performed from HOB (A) or supine (B) position or putting the patient in the Trendelenburg position (C).
Endogenous fluid resuscitation comes from venous return from the legs and the mesenteric veins. The amount of the endogenous fluid resuscitation is indicated
by the thickness of the arrow. Adapted from Minini et al. with permission [106]. A dotted line marked with “X”indicates the absence of endogenous trans-
fusion from that region. PPV — pulse pressure variation, ICP — intracranial pressure, VAP — ventilator-associated pneumonia, IAP — intra-abdominal pressure,
IAH — intra-abdominal hypertension, HOB — head of bed
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too short or too long

pressure elevated > 15 mmHg

(do not touch legs)

FIGURE 7. Most common physiological limitations to the use of passive leg raising (PLR) can be summarized as ‘LIMITS' Adapted from Minini et al.

with permission [106]

fraction, as this leads to a more accurate estima-
tion of preload.

14. Point-of-care ultrasound (POCUS) using TTE and
TEE - left ventricular end-diastolic area (LVEAD)
assessment.

15. POCUS IVC.

16. POCUS-venous excess ultrasound (VExUS).

17. Fluid responsiveness. Fluid resuscitation in sep-
tic patients should be guided by physiological
parameters (SVV or PPV) or tests that are able to
predict fluid responsiveness (passive leg raising
or end expiratory occlusion test).

18. Functional haemodynamic targets should be
adapted in presence of IAH.

19. Passive leg raising can be falsely negative in pres-
ence of IAH.

20. Fluid balance. An excessive positive daily and
cumulative fluid balance should be avoided, as
this is linked to secondary IAH and ACS.

21. Electrolytes. Excessive sodium and chloride in-
take (fluid creep) should be avoided.

22. Lung water. The use of the extravascular lung
water index (EVLWI) is recommended to guide
de-resuscitation in septic patients with IAH not
transgressing spontaneously from the ebb to flow
phase.

23. Perfusion. Fluid resuscitation should only be
given/increased in case of evidence of tissue
hypoperfusion (base deficit, lactate, etc.).

CONCLUSIONS

The haemodynamic consequences of IAH and
ACS are significant. The cardiovascular conse-
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Interval: Time delay before estimation of cardiac output

Myocardial function: Right heart infarction or failure

Increased pressure: Intrathoracic or intra-abdominal

Thoracic compartiment: Thoracic compartment syndrome,
tamponade or tension pneumothorax

False positive False negative

Leg raising: Rule not respected, baseline in semi-recumbent
position HOB 45°, supine PLR > 45°, back to baseline

< < < < L

Stimulation: Avoid adrenergic stimulation or pain

v

quences are multifactorial, including direct effects
on cardiac performance and indirect effects from
regional organ or tissue ischaemia. It is important
to recognise the patient at risk of IAH and to moni-
tor intra-abdominal pressure. Clinical management
should be cognizant of intravascular volume and
potential effects of IAP on venous return, and the
necessity for clinical management to be guided by
careful haemodynamic assessment and phenotyp-
ing of the patient’s haemodynamic profile using
clinical, ultrasonographic and other haemodynamic
monitoring tools.
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